creation.py 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
16

17
# TODO: define functions to get create a tensor  
W
wangchaochaohu 已提交
18 19 20 21 22 23 24 25 26

__all__ = [
    'create_tensor',
    #            'create_lod_tensor', 
    #            'create_random_int_lodtensor',
    #            'crop_tensor', 
    #            'diag', 'eye', 
    #            'fill_constant', 
    #            'get_tensor_from_selected_rows', 
27
    'linspace',
28 29
    'ones',
    'ones_like',
W
wangchaochaohu 已提交
30
    #            'range', 
31 32
    'zeros',
    'zeros_like',
W
wangchaochaohu 已提交
33 34 35 36 37 38 39 40 41 42
    #            'arrange',
    #            'eye',
    'full',
    #            'full_like',
    #            'triu',
    #            'tril',
    #            'meshgrid'
]


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
def linspace(start, stop, num, dtype, out=None, device=None, name=None):
    """
    This OP return fixed number of evenly spaced values within a given interval.
    
    **NOTICE**: The output of this OP has no gradient.

    Args:
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result. Default: None.
        device (string, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default: None.
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.

    Returns:
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, dtype='float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, dtype='float32') # [0.0]

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=start.dtype)
    else:
        check_dtype(
            out.dtype, out.name,
            convert_dtype(start.dtype), 'linspace',
            "The out data type '%s' in linspace must be the same with '%s' seted by parameter 'dtype'."
            % (out.dtype, dtype))
        if name:
            warning.warn(
                "The output Variable name of the paddle.tensor.linspace operation can only be given by parameter out or name.\
                When parameter out and name are set at the same time, out has a higher priority than name. \
                Finally, the output Variable name is same as the out name %s." %
                out.name,
                category=UserWarning,
                stacklevel=2)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in linspace operation must be cpu or gpu, but received %s."
                % (device))
        else:
            with device_guard(device):
                helper.append_op(
                    type='linspace',
                    inputs={'Start': start,
                            'Stop': stop,
                            'Num': num},
                    outputs={'Out': [out]})
    else:
        helper.append_op(
            type='linspace',
            inputs={'Start': start,
                    'Stop': stop,
                    'Num': num},
            outputs={'Out': [out]})

    return out


129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
def ones(shape, dtype=None, out=None, device=None):
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
        shape(tuple|list): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is False.

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.

    Examples:
        .. code-block:: python

          import paddle
          data = paddle.ones(shape=[3, 2], dtype='float32') # [[1., 1.], [1., 1.], [1., 1.]]
          data = paddle.ones(shape=[2, 2], dtype='float32', device='cpu') # [[1., 1.], [1., 0.]]
    """
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)
    return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)


def ones_like(input, dtype=None, device=None, name=None):
    """
    This function creates a ones tensor which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be 
            float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. 
            The default value is None, the dtype is the same as input.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is None.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  
    Returns:
        out(Variable): The tensor variable storing the output.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
          data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]

    """

    helper = LayerHelper("zeros_like", **locals())

    attrs = {"value": 1.0}
    var_dtype = None
    if dtype is not None:
        check_dtype(
            dtype, 'create data type',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'zeros_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = input.dtype

    out = helper.create_variable_for_type_inference(dtype=var_dtype)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            helper.append_op(
                type='fill_any_like',
                inputs={'X': [input]},
                attrs=attrs,
                outputs={'Out': [out]})
            return out
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs=attrs,
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


def zeros(shape, dtype, out=None, device=None):
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
        shape(tuple|list): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is False.

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.

    Examples:
        .. code-block:: python

          import paddle
          data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
          data = paddle.zeros(shape=[2, 2], dtype='float32', device='cpu') # [[0., 0.], [0., 0.]]
    """
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            return fill_constant(value=0.0, shape=shape, dtype=dtype, out=out)

    return fill_constant(value=0.0, shape=shape, dtype=dtype, out=out)


def zeros_like(input, dtype=None, device=None, name=None):
    """
    This function creates a zeros tensor which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be 
            bool, float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. 
            The default value is None, the dtype is the same as input.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is None.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  

    Returns:
        out(Variable): The tensor variable storing the output.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
          data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]

    """

    helper = LayerHelper("zeros_like", **locals())

    attrs = {"value": 0.0}
    var_dtype = None
    if dtype is not None:
        check_dtype(dtype, 'create data type',
                    ['bool', 'float32', 'float64', 'int32', 'int64'],
                    'zeros_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = input.dtype

    out = helper.create_variable_for_type_inference(dtype=var_dtype)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            helper.append_op(
                type='fill_any_like',
                inputs={'X': [input]},
                attrs=attrs,
                outputs={'Out': [out]})
            return out
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs=attrs,
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


W
wangchaochaohu 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
def full(shape,
         fill_value,
         out=None,
         dtype=None,
         device=None,
         stop_gradient=True,
         name=None):
    """
    This function return a Tensor with the `fill_value` which size is same as `shape`
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
        value(float): The constant value used to initialize the Tensor to be created.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        device(str, optional): This parameter specifies that the Tensor is created 
            on the GPU or CPU.
        stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
            default value is True.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
    Examples:
        .. code-block:: python

          import paddle.tensor as tensor
          import paddle.fluid as fluid

          data1 = tensor.full(shape=[2,1], full_value=0, dtype='int64') # data1=[[0],[0]]
          data2 = tensor.full(shape=[2,1], full_value=5, dtype='int64', device='gpu') # data2=[[5],[5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = tensor.full(shape=[1, positive_2], dtype='float32', full_value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = tensor.full(shape=shape, dtype='bool', full_value=True) # data4=[[True,True],[True,True]]
    """

    helper = LayerHelper("full", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'full')
    check_type(shape, 'shape', (Variable, list, tuple), 'full')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)

    out.stop_gradient = stop_gradient

    with device_guard(device):
        out = fill_constant(shape=shape, dtype=dtype, value=fill_value, out=out)

    return out