未验证 提交 d2f7ac61 编写于 作者: Z zhupengyang 提交者: GitHub

ones_like API: remove device, input -> x (#25663)

上级 1e4ab728
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle import ones_like
from paddle.fluid import core, Program, program_guard
class TestOnesLikeAPIError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x = paddle.data('x', [3, 4])
self.assertRaises(TypeError, ones_like, x, 'int8')
class TestOnesLikeAPI(unittest.TestCase):
def test_api(self):
shape = [3, 4]
startup_program = Program()
train_program = Program()
with program_guard(train_program, startup_program):
x = paddle.data('X', shape)
# 'bool', 'float32', 'float64', 'int32', 'int64'
out1 = ones_like(x)
out2 = ones_like(x, np.bool)
out3 = ones_like(x, 'float64')
out4 = ones_like(x, 'int32')
out5 = ones_like(x, 'int64')
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
outs = exe.run(train_program,
feed={'X': np.ones(shape).astype('float32')},
fetch_list=[out1, out2, out3, out4, out5])
for i, dtype in enumerate(
[np.float32, np.bool, np.float64, np.int32, np.int64]):
self.assertEqual(outs[i].dtype, dtype)
self.assertEqual((outs[i] == np.ones(shape, dtype)).all(), True)
class TestOnesLikeImpeartive(unittest.TestCase):
def test_out(self):
shape = [3, 4]
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with paddle.imperative.guard(place):
x = paddle.imperative.to_variable(np.ones(shape))
for dtype in [np.bool, np.float32, np.float64, np.int32, np.int64]:
out = ones_like(x, dtype)
self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(),
True)
out = paddle.tensor.ones_like(x)
self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True)
out = paddle.tensor.creation.ones_like(x)
self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True)
if __name__ == "__main__":
unittest.main()
......@@ -103,7 +103,7 @@ def full_like(x, fill_value, dtype=None, name=None):
helper = LayerHelper("full_like", **locals())
check_dtype(dtype, 'dtype',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'full_like')
'full_like/zeros_like/ones_like')
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
......@@ -164,74 +164,47 @@ def ones(shape, dtype=None, name=None):
return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
def ones_like(input, dtype=None, device=None, name=None):
def ones_like(x, dtype=None, name=None):
"""
:alias_main: paddle.ones_like
:alias: paddle.ones_like,paddle.tensor.ones_like,paddle.tensor.creation.ones_like
:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
This function creates a ones tensor which has identical shape and dtype
with `input`.
This OP returns a Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Args:
input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be
float32, float64, int32, int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64.
The default value is None, the dtype is the same as input.
device(str, optional): Which device to run the operator. The :attr:`device` must be
None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in
the paddle program. Default value is None.
name(str, optional): The name of output variable, normally there is no need for user to set this this property.
Default value is None, the framework set the name of output variable.
x(Tensor): The input tensor which specifies shape and dtype. The
dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: bool, float16, float32, float64,
int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
out(Variable): The tensor variable storing the output.
Tensor: A Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle
import numpy as np
x = fluid.data(name='x', dtype='float32', shape=[3])
data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]
paddle.enable_imperative()
"""
x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
helper = LayerHelper("zeros_like", **locals())
attrs = {"value": 1.0}
var_dtype = None
if dtype is not None:
check_dtype(
dtype, 'create data type',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'zeros_like')
var_dtype = convert_np_dtype_to_dtype_(dtype)
attrs["dtype"] = var_dtype
else:
var_dtype = input.dtype
out = helper.create_variable_for_type_inference(dtype=var_dtype)
if device is not None:
if device not in ['cpu', 'gpu']:
raise ValueError(
"The value of 'device' in zeros_op must be cpu or gpu, but received %s."
% (device))
with fluid.device_guard(device):
helper.append_op(
type='fill_any_like',
inputs={'X': [input]},
attrs=attrs,
outputs={'Out': [out]})
return out
helper.append_op(
type='fill_any_like',
inputs={'X': [input]},
attrs=attrs,
outputs={'Out': [out]})
out.stop_gradient = True
return out
"""
return full_like(x=x, fill_value=1, dtype=dtype, name=name)
def zeros(shape, dtype=None, name=None):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册