Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d2f7ac61
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d2f7ac61
编写于
7月 28, 2020
作者:
Z
zhupengyang
提交者:
GitHub
7月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ones_like API: remove device, input -> x (#25663)
上级
1e4ab728
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
109 addition
and
56 deletion
+109
-56
python/paddle/fluid/tests/unittests/test_ones_like.py
python/paddle/fluid/tests/unittests/test_ones_like.py
+80
-0
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+29
-56
未找到文件。
python/paddle/fluid/tests/unittests/test_ones_like.py
0 → 100644
浏览文件 @
d2f7ac61
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle
import
ones_like
from
paddle.fluid
import
core
,
Program
,
program_guard
class
TestOnesLikeAPIError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
data
(
'x'
,
[
3
,
4
])
self
.
assertRaises
(
TypeError
,
ones_like
,
x
,
'int8'
)
class
TestOnesLikeAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
shape
=
[
3
,
4
]
startup_program
=
Program
()
train_program
=
Program
()
with
program_guard
(
train_program
,
startup_program
):
x
=
paddle
.
data
(
'X'
,
shape
)
# 'bool', 'float32', 'float64', 'int32', 'int64'
out1
=
ones_like
(
x
)
out2
=
ones_like
(
x
,
np
.
bool
)
out3
=
ones_like
(
x
,
'float64'
)
out4
=
ones_like
(
x
,
'int32'
)
out5
=
ones_like
(
x
,
'int64'
)
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
outs
=
exe
.
run
(
train_program
,
feed
=
{
'X'
:
np
.
ones
(
shape
).
astype
(
'float32'
)},
fetch_list
=
[
out1
,
out2
,
out3
,
out4
,
out5
])
for
i
,
dtype
in
enumerate
(
[
np
.
float32
,
np
.
bool
,
np
.
float64
,
np
.
int32
,
np
.
int64
]):
self
.
assertEqual
(
outs
[
i
].
dtype
,
dtype
)
self
.
assertEqual
((
outs
[
i
]
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
class
TestOnesLikeImpeartive
(
unittest
.
TestCase
):
def
test_out
(
self
):
shape
=
[
3
,
4
]
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
paddle
.
imperative
.
guard
(
place
):
x
=
paddle
.
imperative
.
to_variable
(
np
.
ones
(
shape
))
for
dtype
in
[
np
.
bool
,
np
.
float32
,
np
.
float64
,
np
.
int32
,
np
.
int64
]:
out
=
ones_like
(
x
,
dtype
)
self
.
assertEqual
((
out
.
numpy
()
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
out
=
paddle
.
tensor
.
ones_like
(
x
)
self
.
assertEqual
((
out
.
numpy
()
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
out
=
paddle
.
tensor
.
creation
.
ones_like
(
x
)
self
.
assertEqual
((
out
.
numpy
()
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/creation.py
浏览文件 @
d2f7ac61
...
...
@@ -103,7 +103,7 @@ def full_like(x, fill_value, dtype=None, name=None):
helper
=
LayerHelper
(
"full_like"
,
**
locals
())
check_dtype
(
dtype
,
'dtype'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'full_like'
)
'full_like
/zeros_like/ones_like
'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
...
...
@@ -164,74 +164,47 @@ def ones(shape, dtype=None, name=None):
return
fill_constant
(
value
=
1.0
,
shape
=
shape
,
dtype
=
dtype
,
name
=
name
)
def
ones_like
(
input
,
dtype
=
None
,
devic
e
=
None
,
name
=
None
):
def
ones_like
(
x
,
dtyp
e
=
None
,
name
=
None
):
"""
:alias_main: paddle.ones_like
:alias: paddle.
ones_like,paddle.tensor.ones_like,
paddle.tensor.creation.ones_like
:alias: paddle.
tensor.ones_like,
paddle.tensor.creation.ones_like
This
function creates a ones tensor which has identical shape and dtype
with `input
`.
This
OP returns a Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x`
`.
Args:
input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be
float32, float64, int32, int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64.
The default value is None, the dtype is the same as input.
device(str, optional): Which device to run the operator. The :attr:`device` must be
None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in
the paddle program. Default value is None.
name(str, optional): The name of output variable, normally there is no need for user to set this this property.
Default value is None, the framework set the name of output variable.
x(Tensor): The input tensor which specifies shape and dtype. The
dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: bool, float16, float32, float64,
int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
out(Variable): The tensor variable storing the output.
Tensor: A Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle
import numpy as np
x = fluid.data(name='x', dtype='float32', shape=[3])
data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]
paddle.enable_imperative()
"""
x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
helper
=
LayerHelper
(
"zeros_like"
,
**
locals
())
attrs
=
{
"value"
:
1.0
}
var_dtype
=
None
if
dtype
is
not
None
:
check_dtype
(
dtype
,
'create data type'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'zeros_like'
)
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
attrs
[
"dtype"
]
=
var_dtype
else
:
var_dtype
=
input
.
dtype
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
var_dtype
)
if
device
is
not
None
:
if
device
not
in
[
'cpu'
,
'gpu'
]:
raise
ValueError
(
"The value of 'device' in zeros_op must be cpu or gpu, but received %s."
%
(
device
))
with
fluid
.
device_guard
(
device
):
helper
.
append_op
(
type
=
'fill_any_like'
,
inputs
=
{
'X'
:
[
input
]},
attrs
=
attrs
,
outputs
=
{
'Out'
:
[
out
]})
return
out
helper
.
append_op
(
type
=
'fill_any_like'
,
inputs
=
{
'X'
:
[
input
]},
attrs
=
attrs
,
outputs
=
{
'Out'
:
[
out
]})
out
.
stop_gradient
=
True
return
out
"""
return
full_like
(
x
=
x
,
fill_value
=
1
,
dtype
=
dtype
,
name
=
name
)
def
zeros
(
shape
,
dtype
=
None
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录