creation.py 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
L
Li Fuchen 已提交
16
from ..fluid.framework import Variable
P
Pei Yang 已提交
17 18 19 20 21 22
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
23
from paddle.common_ops_import import *
24
import paddle
W
wangchaochaohu 已提交
25

26
# TODO: define functions to get create a tensor  
27 28 29
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
30
from ..fluid.layers import create_tensor  #DEFINE_ALIAS
31
from ..fluid.layers import linspace  #DEFINE_ALIAS
32
import paddle
33

W
wangchaochaohu 已提交
34
__all__ = [
35
    'create_tensor',
36 37 38 39 40 41 42
    #       'create_lod_tensor',
    #       'create_random_int_lodtensor',
    'crop_tensor',
    'diag',
    'eye',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
59
    """
60 61
	:alias_main: paddle.full_like
	:alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like
S
swtkiwi 已提交
62

P
Pei Yang 已提交
63 64 65
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.
66

P
Pei Yang 已提交
67
    Args:
68
        x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
69
        fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
70 71 72
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
73 74
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
75
    Returns:
76 77
        out(Variable): The Tensor variable storing the output.
    
78 79 80
    Raises:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32, int64 and None.
    
P
Pei Yang 已提交
81 82
    Examples:
        .. code-block:: python
83

P
Pei Yang 已提交
84 85
          import paddle
          import numpy as np
86 87 88
          
          paddle.enable_imperative()  # Now we are in imperative mode 
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
89
          output = paddle.full_like(input, 2.0)
90 91
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
92 93 94
    """

    if dtype is None:
95
        dtype = x.dtype
96
    else:
97 98 99 100 101
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
102

103 104 105
    helper = LayerHelper("full_like", **locals())
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
106
                'full_like/zeros_like/ones_like')
107
    out = helper.create_variable_for_type_inference(dtype=dtype)
108

P
Pei Yang 已提交
109 110
    helper.append_op(
        type='fill_any_like',
111
        inputs={'X': [x]},
112
        attrs={'value': fill_value,
113
               "dtype": dtype},
P
Pei Yang 已提交
114
        outputs={'Out': [out]})
115
    out.stop_gradient = True
P
Pei Yang 已提交
116 117 118
    return out


119
def ones(shape, dtype=None, name=None):
120
    """
121 122
	:alias_main: paddle.ones
	:alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones
S
swtkiwi 已提交
123

124 125 126
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
127 128 129 130 131
        shape(tuple|list|Variable): Shape of output tensor, the data type of shape is int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
132 133 134
    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.

135 136
    Raises:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32, int64 and None
137
            and the data type of out Tensor must be the same as the dtype. 
138 139
        TypeError: The `shape` must be one of list, tuple and Variable.
    
140 141 142
    Examples:
        .. code-block:: python

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
          import paddle 
          paddle.enable_imperative()
          
          #default dtype for ones OP
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
          #shape is a Variable
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
161
    """
162 163 164
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
165 166


167
def ones_like(x, dtype=None, name=None):
168
    """
169
	:alias_main: paddle.ones_like
170
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
171

172 173
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
174 175

    Args:
176 177 178 179 180 181 182 183 184 185
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

186
    Returns:
187 188 189 190 191 192
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
193 194 195 196

    Examples:
        .. code-block:: python

197 198
        import paddle
        import numpy as np
199

200
        paddle.enable_imperative()
201

202 203 204
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
        out1 = paddle.zeros_like(x) # [1., 1., 1.]
        out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
205

206 207
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
208 209


210
def zeros(shape, dtype=None, name=None):
211
    """
212 213
	:alias_main: paddle.zeros
	:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
S
swtkiwi 已提交
214

215 216 217
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
218
        shape(tuple|list|Variable): Shape of output tensor. The data type of shape is int32 or int64.
219 220 221 222
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
223 224 225 226 227 228 229 230

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.

    Examples:
        .. code-block:: python

          import paddle
231 232
          
          paddle.enable_imperative()  # Now we are in imperative mode
233
          data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
234
          data = paddle.zeros(shape=[2, 2], dtype='int32', name='zeros') # [[0, 0], [0, 0]]
235
    """
236 237 238
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
239 240


241
def zeros_like(x, dtype=None, name=None):
242
    """
243
	:alias_main: paddle.zeros_like
244
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
245

246 247
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
248 249

    Args:
250 251 252 253 254 255
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
256 257 258
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
259 260

    Returns:
261 262
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
263

264
    Raise:
265 266
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
267

268 269 270
    Examples:
        .. code-block:: python

271 272
        import paddle
        import numpy as np
273

274
        paddle.enable_imperative()
275

276
        x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
277 278
        out1 = paddle.zeros_like(x) # [0., 0., 0.]
        out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
279

280 281
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
282 283


284
def eye(num_rows, num_columns=None, dtype=None, name=None):
285
    """
286
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
287

288 289 290
    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int, optional): the number of columns in each batch tensor.
291 292 293 294
            If None, default: num_rows.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
295 296
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
297

298 299
    Returns:
        Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
300 301 302 303
    
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The `num_columns` must be non-negative int.
304

305 306 307
    Examples:
        .. code-block:: python
          import paddle
308 309

          paddle.enable_imperative()  # Now we are in imperative mode
310
          data = paddle.eye(3, dtype='int32')
311 312 313
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
314
          data = paddle.eye(2, 3, dtype='int32')
315 316
          # [[1 0 0]
          #  [0 1 0]]
317 318
    """

319 320 321
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
322
        num_columns = num_rows
323 324 325 326 327
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
328 329


330
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
331
    """
332 333
	:alias_main: paddle.full
	:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
S
swtkiwi 已提交
334

335
    This Op return a Tensor with the `fill_value` which size is same as `shape`
W
wangchaochaohu 已提交
336 337 338 339 340 341
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
342 343
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
344 345 346 347 348 349
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
350 351 352 353 354
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
355
        TypeError: The `shape` must be one of Variable, list and tuple.
356
    
W
wangchaochaohu 已提交
357 358 359
    Examples:
        .. code-block:: python

360
          import paddle
W
wangchaochaohu 已提交
361

362
          paddle.enable_imperative()  # Now we are in imperative mode
363 364 365
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
366 367

          # attr shape is a list which contains Variable Tensor.
368
          positive_2 = paddle.fill_constant([1], "int32", 2)
369 370
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
371 372

          # attr shape is an Variable Tensor.
373 374 375 376
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
377
          
378 379 380 381 382
          # attr fill_value is an Variable Tensor.
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
383 384 385 386 387
    """

    if dtype is None:
        dtype = 'float32'

388
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
389 390


391
def arange(start=0, end=None, step=1, dtype=None, name=None):
392
    """
393
	:alias_main: paddle.arange
394
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
395

396
    This OP returns a 1-D Tensor with spaced values within a given interval.
397

398 399
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
400

401 402
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
403 404

    Parameters:
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
423

424 425 426 427
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
428

429
    Raises:
430
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
431

432 433 434 435
    examples:

        .. code-block:: python

436 437
        import paddle
        import numpy as np
438

439
        paddle.enable_imperative()
440

441 442
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
443

444 445
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
446

447 448 449
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
450

451 452 453 454 455 456 457 458 459 460
        start_var = paddle.imperative.to_variable(np.array([3]))
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
461

462
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
502 503
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
504

W
WuHaobo 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.tensor as tensor
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = tensor.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
            tril = tensor.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
            tril = tensor.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

569 570 571 572
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
573 574 575 576 577 578

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
579 580
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
581

W
WuHaobo 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            import paddle.tensor as tensor

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            triu = tensor.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
            triu = tensor.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
            triu = tensor.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
647 648 649
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
650 651

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
652 653


654
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
655
    """
656 657
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
658

659
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
660 661 662
    vector, and creates N-dimensional grids.
    
    Args:
663
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
664
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
665 666
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
686
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
701 702
          
          paddle.enable_imperative()
S
suytingwan 已提交
703 704 705

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
706 707 708
          tensor_3 = paddle.imperative.to_variable(input_3)
          tensor_4 = paddle.imperative.to_variable(input_4)
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
709 710 711 712 713 714

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

715 716
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
717
    if in_dygraph_mode():
718 719
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
720 721
        return out

722
    name = kwargs.get("name", None)
S
suytingwan 已提交
723 724
    helper = LayerHelper('meshgrid', **locals())

725 726
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
727

728
    for id, input_ in enumerate(args):
S
suytingwan 已提交
729 730 731 732
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

733
    num = len(args)
S
suytingwan 已提交
734
    out = [
735
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
736 737
        for i in range(num)
    ]
738 739
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
740 741

    return out