framework.py 74.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23
import sys
24

Y
Yu Yang 已提交
25
import numpy as np
Q
qiaolongfei 已提交
26

M
minqiyang 已提交
27
from .. import compat as cpt
28
from .proto import framework_pb2
29
try:
P
peizhilin 已提交
30
    if os.name == 'nt':
P
peizhilin 已提交
31
        import sys
P
peizhilin 已提交
32 33 34 35 36
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

37
    from . import core
38
except ImportError as e:
P
peizhilin 已提交
39 40 41 42 43 44 45 46 47 48 49 50
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
51
except Exception as e:
52
    raise e
53
from . import unique_name
Y
Yu Yang 已提交
54

55
__all__ = [
56 57 58 59
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
60
    'name_scope',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

69 70 71 72 73 74 75 76 77 78
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
119

120 121 122 123
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
124 125
          with name_scope("attention"):
             ...
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
145 146 147
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
148 149 150 151


def grad_var_name(var_name):
    """
152 153
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
154 155 156
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
157

158
def convert_np_dtype_to_dtype_(np_dtype):
159 160
    """
    Convert the data type in numpy to the data type in Paddle
161

162
    Args:
163
        np_dtype(np.dtype): the data type in numpy.
164

165 166
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
167 168

    """
169 170
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
171
        return core.VarDesc.VarType.FP32
172
    elif dtype == np.float64:
173
        return core.VarDesc.VarType.FP64
174
    elif dtype == np.float16:
175
        return core.VarDesc.VarType.FP16
176
    elif dtype == np.int32:
177
        return core.VarDesc.VarType.INT32
178
    elif dtype == np.int16:
179
        return core.VarDesc.VarType.INT16
180
    elif dtype == np.int64:
181
        return core.VarDesc.VarType.INT64
182
    elif dtype == np.bool:
183
        return core.VarDesc.VarType.BOOL
184 185
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
186 187
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
188 189
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
190
    else:
M
minqiyang 已提交
191
        raise ValueError("Not supported numpy dtype %s" % dtype)
192 193 194


def dtype_is_floating(dtype):
195 196 197
    """
    Check the data type is floating or not.
    Args:
198
        dtype(np.dtype|core.VarDesc.VarType): data type.
199 200 201 202 203
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
204
    if not isinstance(dtype, core.VarDesc.VarType):
205 206
        dtype = convert_np_dtype_to_dtype_(dtype)

207 208 209 210
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
211 212


Y
Yang Yang(Tony) 已提交
213
def _debug_string_(proto, throw_on_error=True):
214 215 216 217 218 219 220 221 222 223 224
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
225
    error_fields = list()
Y
Yang Yang(Tony) 已提交
226
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
227 228
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
229 230 231
    return proto.__str__()


X
Xin Pan 已提交
232
class Variable(object):
233
    """
234 235 236
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
237
    two variables in different blocks could have the same name.
238

239 240
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
241

242
    Most of a Variable's member variables can be setted to be None. It mean
243
    it is not available or will be specified later.
244 245

    Args:
246
        block(Block): The block that the variable belongs to.
247 248
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
249 250
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
251
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
252
            Some kinds of variable do not contain shape, just set it to None.
253 254 255
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
256
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
257
            series data.
258
            Default: None
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
281 282
    """

Y
Yu Yang 已提交
283 284
    def __init__(self,
                 block,
Y
Yu Yang 已提交
285
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
286 287 288 289
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
290
                 capacity=None,
Q
QI JUN 已提交
291
                 persistable=None,
F
fengjiayi 已提交
292
                 error_clip=None,
Y
Yu Yang 已提交
293
                 stop_gradient=False,
F
fengjiayi 已提交
294
                 is_data=False,
Y
Yu Yang 已提交
295
                 **kwargs):
Y
Yu Yang 已提交
296
        self.block = block
F
fengjiayi 已提交
297
        self.error_clip = error_clip
Y
Yu Yang 已提交
298 299

        if name is None:
Y
Yu Yang 已提交
300
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
301
        is_new_var = False
M
minqiyang 已提交
302
        name = cpt.to_text(name)
M
minqiyang 已提交
303
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
304 305

        if self.desc is None:
M
minqiyang 已提交
306
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
307
            is_new_var = True
Y
Yu Yang 已提交
308

Y
Yu Yang 已提交
309 310 311 312 313 314 315 316
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
317
        if shape is not None:
Y
Yu Yang 已提交
318
            if is_new_var:
319
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
320 321 322 323 324 325 326 327
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
328
        if dtype is not None:
329
            if not isinstance(dtype, core.VarDesc.VarType):
330
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
331
            if is_new_var:
F
fengjiayi 已提交
332
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
333
            else:
F
fengjiayi 已提交
334
                old_dtype = self.dtype
Q
QI JUN 已提交
335
                if dtype != old_dtype:
Y
Yu Yang 已提交
336 337 338 339 340
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
341 342

        if lod_level is not None:
Y
Yu Yang 已提交
343
            if is_new_var:
344
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
345 346 347 348 349 350 351
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
352 353 354 355 356 357 358 359 360 361 362
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

363 364 365 366 367 368 369 370
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
371
        self.block.vars[name] = self
Y
Yu Yang 已提交
372
        self.op = None
Y
Yu Yang 已提交
373
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
374
        self.is_data = is_data
X
Xin Pan 已提交
375 376 377
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
Y
Yu Yang 已提交
378

379
    def _numpy(self):
X
Xin Pan 已提交
380
        tensor = self._ivar.var.get_tensor()
381 382 383
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
384
        self._ivar._run_backward()
385 386

    def _gradient(self):
X
Xin Pan 已提交
387
        return np.array(self._ivar._grad())
388

389
    def __str__(self):
Y
Yang Yang(Tony) 已提交
390 391
        return self.to_string(True)

F
update  
fengjiayi 已提交
392
    def to_string(self, throw_on_error, with_details=False):
393 394 395 396
        """
        Get debug string.

        Args:
397 398
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
399
            with_details(bool): more details about variables and parameters
400 401
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
402

403 404
        Returns:
            str: The debug string.
405
        """
F
update  
fengjiayi 已提交
406 407
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
408
        protostr = self.desc.serialize_to_string()
409
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
410 411 412 413
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
414 415
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
416
        return res_str
417 418 419

    __repr__ = __str__

W
Wu Yi 已提交
420
    def _set_desc(self, input):
421 422 423 424 425 426 427 428 429
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
430 431
        self.desc = input

432 433 434 435
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
436 437 438 439
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
440 441
    @property
    def name(self):
M
minqiyang 已提交
442
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
443

T
typhoonzero 已提交
444 445 446 447
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
448 449 450
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
451
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
452 453

    @property
F
fengjiayi 已提交
454 455
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
456 457 458

    @property
    def lod_level(self):
459
        return self.desc.lod_level()
Y
Yu Yang 已提交
460

Y
Yu Yang 已提交
461 462 463 464
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
465
    def _set_error_clip(self, error_clip):
466 467 468 469 470 471 472 473 474
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
475 476
        self.error_clip = error_clip

Y
Yu Yang 已提交
477

F
fengjiayi 已提交
478 479 480
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
481

482 483
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
484 485 486 487
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
488
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
489 490 491 492 493
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
494 495 496 497
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
498 499 500 501 502 503 504 505 506
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
507
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
508 509 510 511 512 513
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
514 515 516 517 518 519 520 521
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
522 523
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
524 525
        return self.op_proto_map[type]

526 527 528 529
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
530
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
531
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
532 533
        }

F
fengjiayi 已提交
534

X
Xin Pan 已提交
535
class Operator(object):
536
    """
537 538 539 540 541 542 543
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
544
        type(str): The type of operator. Default None.
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
565
        Block.append_op or Block._prepend_op instead.
566 567 568 569 570 571 572 573 574 575

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
576
    """
577 578 579
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
580 581
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
582
    }
583

Y
Yu Yang 已提交
584 585
    def __init__(self,
                 block,
Y
Yu Yang 已提交
586
                 desc,
Y
Yu Yang 已提交
587 588 589 590 591
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
592
        self.desc = desc
G
gongweibao 已提交
593 594 595 596 597
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
598 599 600 601
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
602 603
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
604 605 606

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
607 608
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
609

G
gongweibao 已提交
610 611
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
612

F
fengjiayi 已提交
613 614 615 616 617
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
618
        self.desc.set_type(type)
F
fengjiayi 已提交
619
        proto = OpProtoHolder.instance().get_op_proto(type)
620

621 622 623
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
624 625
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
626
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
627 628
                    return True
            return False
Q
QI JUN 已提交
629

Y
Yang Yang(Tony) 已提交
630 631 632 633 634 635 636
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
637 638 639 640
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
641 642
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
643 644 645
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
646
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
647
                            in_arg_names.append(arg)
648 649
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
650
                        else:
M
minqiyang 已提交
651
                            in_arg_names.append(cpt.to_text(arg.name))
652
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
653 654
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
655

Y
Yu Yang 已提交
656
        if outputs is not None:
657
            for m in proto.outputs:
Q
qingqing01 已提交
658 659 660 661 662 663
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
664
            for out_proto in proto.outputs:
Q
qingqing01 已提交
665 666
                if out_proto.name not in outputs:
                    continue
667 668 669 670
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
671 672
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
673 674 675
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
676
                    out_arg_names.append(cpt.to_text(arg.name))
677 678
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
679

G
gongweibao 已提交
680 681
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
682
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
683
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
684
                attr_name = attr.name
G
gongweibao 已提交
685
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
686
                    continue
G
gongweibao 已提交
687
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
688 689
                self._update_desc_attr(attr_name, attr_val)

690
        self.desc.check_attrs()
W
Wu Yi 已提交
691
        if self._has_kernel(type):
Q
QI JUN 已提交
692
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
693
            self.desc.infer_shape(self.block.desc)
X
Xin Pan 已提交
694 695 696
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
697
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
698
            if inputs is not None:
X
Xin Pan 已提交
699 700 701 702 703 704
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
705
            if outputs is not None:
X
Xin Pan 已提交
706 707 708 709 710
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
711

W
Wu Yi 已提交
712
    def _has_kernel(self, op_type):
713 714
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
715
    def to_string(self, throw_on_error):
716
        """
717 718
        Get debug string.

719
        Args:
720 721
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
722

723 724
        Returns:
            str: The debug string.
725 726

        """
727
        protostr = self.desc.serialize_to_string()
728
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
729 730 731 732
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
733 734 735

    __repr__ = __str__

F
fengjiayi 已提交
736 737 738 739 740
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
741
        """
742
        Get the input arguments according to the input parameter name.
743

744 745
        Args:
            name(str): The input parameter name.
746

747 748 749
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
750
        """
F
fengjiayi 已提交
751 752
        return self.desc.input(name)

W
Wu Yi 已提交
753
    def _rename_input(self, old_name, new_name):
754 755 756 757 758 759 760 761 762 763
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
764
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
765

W
Wu Yi 已提交
766
    def _rename_output(self, old_name, new_name):
767 768 769 770 771 772 773 774 775 776
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
777
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
778

F
fengjiayi 已提交
779 780 781 782
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
783 784 785 786 787 788 789 790
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
791
    def output(self, name):
792
        """
793
        Get output arguments by the output parameter name.
794

795 796
        Args:
            name(str): The output parameter name.
797

798 799 800
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
801
        """
F
fengjiayi 已提交
802 803 804 805 806 807
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

808 809 810 811 812 813 814 815
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
816
    def has_attr(self, name):
817
        """
818 819
        Whether this Operator has the attribute with name or not.

820
        Args:
821
            name(str): the attribute name.
822

823 824
        Returns:
            bool: True if has this attribute.
825 826

        """
F
fengjiayi 已提交
827 828 829
        return self.desc.has_attr(name)

    def attr_type(self, name):
830
        """
831
        Get the type of attribute by attribute's name.
832

833 834
        Args:
            name(str): the attribute name.
835

836 837
        Returns:
            core.AttrType: the attribute type.
838
        """
F
fengjiayi 已提交
839 840
        return self.desc.attr_type(name)

W
Wu Yi 已提交
841
    def _set_attr(self, name, val):
842 843 844 845 846 847 848 849 850 851
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
865 866
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
867 868
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
869
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
870 871 872 873
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
874
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
875

F
fengjiayi 已提交
876 877 878 879 880
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
881
        """
882 883
        Get the attribute by name.

884
        Args:
885
            name(str): the attribute name.
886

887 888
        Returns:
            bool|int|str|float|list: The attribute value. The return value
889 890
            can be any valid attribute type.
        """
F
fengjiayi 已提交
891
        return self.desc.attr(name)
Y
Yu Yang 已提交
892

W
Wu Yi 已提交
893
    def _block_attr_id(self, name):
894
        """
G
gongweibao 已提交
895
        Get the block attribute's id by name.
896

897 898
        Args:
            name(str): the attribute name.
899

900 901
        Returns:
            int: the block index.
902
        """
W
Wu Yi 已提交
903
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
904

W
Wu Yi 已提交
905
    def _block_attr(self, name):
G
gongweibao 已提交
906 907 908 909 910 911 912 913 914 915
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
916
        id = self._block_attr_id(name)
G
gongweibao 已提交
917 918 919
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
920
    def _blocks_attr(self, name):
G
gongweibao 已提交
921 922 923 924 925 926 927 928 929 930
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
931
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
932 933 934 935 936
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
937
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
938 939 940 941 942 943 944 945 946 947
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
948
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
949

J
JiayiFeng 已提交
950
    def all_attrs(self):
F
fengjiayi 已提交
951
        """
952 953 954
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
955
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
956 957 958 959
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
960 961
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
962
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
963 964 965
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
966
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
967 968 969 970
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
971 972
        return attr_map

Y
Yu Yang 已提交
973

Y
Yu Yang 已提交
974
class Block(object):
975 976 977 978 979 980 981 982 983 984 985 986 987 988
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
989
        use `Program._create_block()` to create a block.
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1004
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1005
        self.desc = program.desc.block(idx)
1006
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1007
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1008
        self.program = program
1009
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1010

1011
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1012 1013
        return self.to_string(True)

F
fengjiayi 已提交
1014 1015
    def to_string(self, throw_on_error, with_details=False):
        """
1016 1017
        Get debug string.

F
fengjiayi 已提交
1018 1019
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1020
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1021
            with_details(bool): more details about variables and parameters
1022 1023
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1024

1025 1026
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1027 1028 1029 1030
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1031
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1032 1033
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1034
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1035
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1036
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1037
            for op in self.ops:
F
fengjiayi 已提交
1038 1039
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1040 1041 1042
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1043 1044
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1045 1046
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1047 1048 1049

    __repr__ = __str__

Y
Yu Yang 已提交
1050 1051
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1052
        return self.desc.parent
Y
Yu Yang 已提交
1053

Y
Yu Yang 已提交
1054 1055 1056 1057
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1058
    def _set_forward_block_idx(self, idx):
1059 1060 1061 1062 1063 1064 1065 1066 1067
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1068
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1069

Y
Yu Yang 已提交
1070 1071
    @property
    def idx(self):
Y
Yu Yang 已提交
1072
        return self.desc.id
Y
Yu Yang 已提交
1073

Q
Qiao Longfei 已提交
1074
    def var(self, name):
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1088
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1089 1090 1091
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1092 1093
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1094
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1095
        return v
Q
Qiao Longfei 已提交
1096

X
Xin Pan 已提交
1097
    def _find_var_recursive(self, name):
1098 1099 1100 1101 1102 1103 1104
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1105
            Variable: the Variable with the giving name. Or None if not found.
1106
        """
Y
Yu Yang 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1131
        return None
Y
Yu Yang 已提交
1132

X
Xin Pan 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1152

Q
Qiao Longfei 已提交
1153
    def all_parameters(self):
1154
        return list(self.iter_parameters())
1155

1156
    def iter_parameters(self):
M
minqiyang 已提交
1157
        return (item[1] for item in six.iteritems(self.vars)
1158
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1159

Y
Yu Yang 已提交
1160
    def create_var(self, *args, **kwargs):
1161
        var = Variable(block=self, *args, **kwargs)
1162 1163
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1164
        return var
Y
Yu Yang 已提交
1165

Q
Qiao Longfei 已提交
1166 1167 1168
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1169
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1170 1171
        """
        Rename variable in vars and ops' inputs and outputs
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1184
        """
M
minqiyang 已提交
1185 1186
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1187

T
typhoonzero 已提交
1188
        if not self.has_var(name):
1189
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1190 1191
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1192
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1193 1194 1195 1196 1197 1198 1199
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1200
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1201 1202 1203 1204
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1205
        orig_var_type = v.type
M
minqiyang 已提交
1206
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1207
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1208
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1209
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1210 1211 1212 1213
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1214
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1215 1216 1217 1218 1219 1220 1221
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1222
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1223 1224
            var = Variable(
                self,
T
typhoonzero 已提交
1225
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1226 1227 1228 1229
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1230
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1231 1232 1233
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1234
        self._sync_with_cpp()
1235
        return var
T
typhoonzero 已提交
1236

W
Wu Yi 已提交
1237 1238
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1239
        self.desc._remove_var(cpt.to_bytes(name))
1240 1241
        del self.vars[name]

Y
Yu Yang 已提交
1242 1243
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1244
        param = Parameter(global_block, *args, **kwargs)
1245
        if 'initializer' in kwargs:
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1266
        return param
Y
Yu Yang 已提交
1267

Y
Yu Yang 已提交
1268
    def append_op(self, *args, **kwargs):
1269 1270 1271 1272 1273 1274
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1275
        op_desc = self.desc.append_op()
1276
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
1277
        if _in_imperative_mode():
X
Xin Pan 已提交
1278
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc)
Y
Yu Yang 已提交
1279 1280 1281
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1282
    def _insert_op(self, index, *args, **kwargs):
1283 1284 1285 1286 1287 1288 1289 1290 1291
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1292 1293
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1294 1295 1296 1297
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1298
    def _remove_op(self, index):
1299 1300 1301 1302 1303 1304 1305 1306 1307
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1308 1309
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1310 1311
        del self.ops[index]

W
Wu Yi 已提交
1312
    def _slice_ops(self, start, end):
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1323
        return self.ops[start:end]
Y
Yancey1989 已提交
1324

W
Wu Yi 已提交
1325 1326
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1327
        op = Operator(self, op_desc, *args, **kwargs)
X
Xin Pan 已提交
1328
        if _in_imperative_mode():
X
Xin Pan 已提交
1329
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc)
Q
qiaolongfei 已提交
1330
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1331 1332
        return op

W
Wu Yi 已提交
1333
    def _sync_with_cpp(self):
1334
        """
1335 1336
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1337
        """
Q
Qiao Longfei 已提交
1338 1339 1340 1341 1342
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1343
        # sync variables removed from c++ end
1344
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1345
            if not self.desc.find_var(cpt.to_bytes(var)):
1346 1347
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1348
        # sync operators from cpp
1349 1350 1351 1352
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1369 1370 1371 1372 1373

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1374
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1375 1376 1377 1378 1379 1380 1381

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1395 1396 1397 1398
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1399
    def _copy_param_info_from(self, other):
1400
        """
1401 1402
        Copy the information of parameters from the other block.

1403
        Args:
1404 1405 1406 1407 1408
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1409 1410 1411 1412 1413

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1414 1415
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1416
        for p in other.iter_parameters():
1417 1418 1419
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1420
                raise ValueError("_copy_param_info_from should be invoked with "
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1433
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1434
                error_clip=p.error_clip,
1435 1436 1437
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1438
    def _clone_variable(self, var):
1439 1440
        """
        Clone a variable into current block.
1441

1442 1443 1444 1445
        Args:
            var: the variable to be cloned.

        Returns:
1446
            Variable: the new  variable cloned from 'var' in current block.
1447 1448
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1449 1450 1451 1452 1453
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1454 1455
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1456
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1457 1458 1459 1460 1461 1462
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1463 1464
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1465 1466 1467 1468 1469 1470 1471
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1472 1473
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1474
        return ret_var
1475

Y
Yu Yang 已提交
1476 1477

class Program(object):
D
dzhwinter 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1489
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1490 1491

    Returns:
Y
yuyang18 已提交
1492
        A empty program.
D
dzhwinter 已提交
1493 1494

    Examples:
Y
yuyang18 已提交
1495 1496 1497 1498 1499 1500
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1501 1502 1503

    """

1504 1505
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1506 1507
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1508
        self._seed = 0
Y
yuyang18 已提交
1509
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1510
        self._op_role_var = []
T
tangwei12 已提交
1511 1512 1513 1514

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1515
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1516
        self._endpoints = []
1517
        self._trainers_endpoints = []
T
tangwei12 已提交
1518
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1519 1520 1521

    @property
    def op_role(self):
Y
yuyang18 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1535 1536 1537 1538 1539 1540 1541 1542
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1543 1544 1545 1546 1547 1548 1549
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1550 1551 1552 1553
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1554
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1555 1556

    @contextlib.contextmanager
W
Wu Yi 已提交
1557
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1558 1559 1560 1561 1562 1563 1564
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1565
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1566 1567 1568 1569

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1570
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1571 1572
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1573 1574 1575
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1576 1577
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1578 1579 1580 1581
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1582
        yield
X
Xin Pan 已提交
1583 1584
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1585

1586
    @contextlib.contextmanager
X
Xin Pan 已提交
1587
    def _lr_schedule_guard(self, is_with_opt=False):
1588 1589 1590 1591 1592 1593 1594
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1595 1596 1597 1598
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1599 1600 1601 1602 1603 1604 1605

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1606 1607 1608 1609

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1610 1611
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1612 1613
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1614 1615 1616
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1617 1618
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1619

1620
    def __str__(self):
Y
yuyang18 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1630 1631
        return self.to_string(True)

F
fengjiayi 已提交
1632 1633 1634
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1635

F
fengjiayi 已提交
1636
        Args:
Y
yuyang18 已提交
1637 1638
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1639

Y
yuyang18 已提交
1640 1641 1642 1643
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1644 1645
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1646 1647 1648 1649

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1660 1661
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1662 1663
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1664

W
Wu Yi 已提交
1665
    def _get_desc(self):
Y
yuyang18 已提交
1666 1667 1668 1669 1670 1671 1672
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1673 1674
        return self.desc

X
version  
Xin Pan 已提交
1675 1676 1677
    def _version(self):
        return self.desc._version()

1678
    def clone(self, for_test=False):
Y
yuyang18 已提交
1679 1680 1681
        """
        Create a new, duplicated program.

1682

Y
yuyang18 已提交
1683 1684 1685 1686
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1687

Y
yuyang18 已提交
1688 1689 1690 1691
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1692 1693 1694 1695 1696
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1697 1698

        Args:
Y
yuyang18 已提交
1699 1700
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1701

D
dzhwinter 已提交
1702
        Returns:
Y
yuyang18 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1756 1757
        """
        if for_test:
X
Xin Pan 已提交
1758
            p = self._inference_optimize(prune_read_op=False)
1759
        else:
1760
            p = Program()
G
gongweibao 已提交
1761 1762
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1763
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1764 1765 1766
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1767 1768 1769 1770

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1771
            p._sync_with_cpp()
1772

W
Wu Yi 已提交
1773
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1774
        p._copy_data_info_from(self)
1775
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1776
        return p
1777

W
Wu Yi 已提交
1778
    def _prune(self, targets):
Y
yuyang18 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1794 1795 1796 1797 1798 1799
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1800 1801
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1802
                    # and we need to find the current op that generate this
1803 1804 1805 1806 1807 1808 1809 1810
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1811
                    t = t.op
1812 1813 1814 1815
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1816
                else:
1817 1818
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1819 1820 1821 1822

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1823 1824 1825
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1826
        res._sync_with_cpp()
1827 1828
        return res

X
Xin Pan 已提交
1829
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1830
        """
F
fengjiayi 已提交
1831 1832 1833 1834 1835
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1836
        3. change the :code:`is_test`
Y
yuyang18 已提交
1837 1838 1839
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1840
        Args:
X
Xin Pan 已提交
1841 1842
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1843

Y
yuyang18 已提交
1844 1845 1846 1847 1848 1849
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1850
        res = Program()
1851
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1852 1853 1854 1855

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1856
        if prune_read_op:
1857 1858 1859 1860 1861 1862 1863 1864 1865
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1866
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1867 1868

        # change all `is_test` attributes to True
M
minqiyang 已提交
1869
        for i in six.moves.range(res.desc.num_blocks()):
1870
            block = res.desc.block(i)
M
minqiyang 已提交
1871
            for j in six.moves.range(block.op_size()):
1872 1873
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1874
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1875 1876 1877
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1878
        res._sync_with_cpp()
1879 1880
        return res

1881 1882
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1883 1884 1885 1886 1887 1888 1889
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1890
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1891 1892 1893 1894

        Returns:
            Program: A deserialized program desc.
        """
1895 1896
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1897
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1898
        p._sync_with_cpp()
1899
        return p
Y
Yu Yang 已提交
1900

D
dzhwinter 已提交
1901 1902
    @property
    def random_seed(self):
Y
yuyang18 已提交
1903 1904 1905 1906 1907 1908
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1909 1910
        return self._seed

Q
qiaolongfei 已提交
1911 1912
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1913 1914 1915
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1916 1917
        return self.desc.num_blocks()

D
dzhwinter 已提交
1918 1919 1920 1921 1922 1923
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1924
    def __repr__(self):
1925
        return self.__str__()
1926

Y
Yu Yang 已提交
1927
    def global_block(self):
Y
yuyang18 已提交
1928 1929 1930
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1931 1932
        return self.blocks[0]

Q
Qiao Longfei 已提交
1933
    def block(self, index):
Y
yuyang18 已提交
1934 1935 1936 1937 1938 1939 1940 1941
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1942 1943
        return self.blocks[index]

Y
Yu Yang 已提交
1944
    def current_block(self):
Y
yuyang18 已提交
1945 1946 1947 1948
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1949 1950
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1951
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1962
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1963 1964 1965
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1966 1967 1968 1969
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1970
    def _rollback(self):
Y
yuyang18 已提交
1971 1972 1973 1974 1975
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1976 1977
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1978
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1989 1990 1991
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1992
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1993

W
Wu Yi 已提交
1994
    def _copy_param_info_from(self, other):
1995
        """
1996
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1997

Y
yuyang18 已提交
1998 1999 2000
        Notes: This is a very low level API. Users should not invoke it
        directly.

2001 2002 2003 2004 2005 2006 2007
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2008
            raise TypeError("_copy_param_info_from should be invoked with "
2009 2010 2011
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2012
            raise ValueError("_copy_param_info_from should be invoked with two "
2013
                             "program, with represent the same topology")
W
Wu Yi 已提交
2014
        self.global_block()._copy_param_info_from(other.global_block())
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2035
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2036 2037
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2038

Y
yuyang18 已提交
2039 2040 2041
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2042 2043 2044 2045 2046 2047 2048
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2049
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2050 2051 2052
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2053
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2054
                             "program, with represent the same topology")
2055
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2056 2057 2058
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2059
    def list_vars(self):
Y
yuyang18 已提交
2060 2061 2062 2063 2064 2065
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2066
        for each_block in self.blocks:
2067
            for each_var in list(each_block.vars.values()):
2068 2069
                yield each_var

Y
Yu Yang 已提交
2070

Y
Yu Yang 已提交
2071
class Parameter(Variable):
2072
    """
2073
    Parameter is derived from Variable. A parameter is a persistable
2074
    Variable, and will be updated by optimizers after each iteration.
2075
    The training of a neural network is essentially the updating of
2076 2077
    its parameters.

2078
    Relative to a general Variable, a Parameter has several its own
2079 2080
    member variables:

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2093 2094
    """

Y
Yu Yang 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2105 2106 2107

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2108 2109 2110 2111
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2112 2113
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2114
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2115

W
wanghaoshuang 已提交
2116
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2117

F
fengjiayi 已提交
2118 2119 2120
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2121 2122 2123
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2124

F
update  
fengjiayi 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2139
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2140
            for attr_name in additional_attr:
2141 2142
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2143 2144
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2145 2146 2147 2148
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2149

Y
Yu Yang 已提交
2150
# program is a global instance.
Y
Yu Yang 已提交
2151 2152
_main_program_ = Program()
_startup_program_ = Program()
2153

2154

2155
def default_startup_program():
Y
Yu Yang 已提交
2156
    """
Y
yuyang18 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2166

Y
Yu Yang 已提交
2167 2168 2169
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2170
    return _startup_program_
2171

2172

2173
def default_main_program():
Y
Yu Yang 已提交
2174
    """
Y
yuyang18 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2184

Y
Yu Yang 已提交
2185 2186 2187
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2188
    return _main_program_
Y
Yu Yang 已提交
2189 2190 2191 2192 2193


def switch_main_program(program):
    """
    Switch the main program to a new program.
2194

Y
Yu Yang 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2209
    Switch the startup program to a new program
Y
Yu Yang 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2225 2226 2227
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2228

Y
Yu Yang 已提交
2229
    Examples:
Y
yuyang18 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2240

Y
Yu Yang 已提交
2241
    Examples:
Y
yuyang18 已提交
2242 2243 2244 2245 2246 2247

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2248

Y
Yu Yang 已提交
2249
    Args:
Y
yuyang18 已提交
2250
        main_program(Program): New main program inside `with` statement.
2251
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2265 2266


W
Wu Yi 已提交
2267
def _get_var(name, program=None):
X
xuwei06 已提交
2268
    """
Y
yuyang18 已提交
2269
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2270

X
xuwei06 已提交
2271 2272 2273
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2274
        If None, default_global_program() will be used.
X
xuwei06 已提交
2275 2276 2277 2278 2279 2280 2281

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2282
    assert isinstance(program, Program)
X
xuwei06 已提交
2283 2284

    return program.global_block().var(name)
2285 2286 2287 2288 2289 2290 2291 2292 2293


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace