conv.py 70.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18 19 20 21 22 23 24 25 26
from paddle import _C_ops, _legacy_C_ops, get_flags, in_dynamic_mode
from paddle.device import (
    get_all_custom_device_type,
    is_compiled_with_cuda,
    is_compiled_with_npu,
    is_compiled_with_rocm,
)
from paddle.fluid.framework import (
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
27
from paddle.tensor.math import _add_with_axis
28

L
LielinJiang 已提交
29
from ...device import get_cudnn_version
30 31
from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
32 33 34
from ...fluid.layers.utils import (
    _contain_var,
    _convert_to_tensor_list,
35 36
    _is_symmetric_padding,
    convert_to_list,
37
)
38
from ...framework import no_grad
39 40
from ...static import Variable
from ...tensor.manipulation import squeeze, unsqueeze
41

42 43
__all__ = []

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
67 68 69 70
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
85 86
                    "is not supported.".format(padding)
                )
87
            padding_algorithm = "EXPLICIT"
88
            padding = _exclude_padding_in_batch_and_channel(
89 90
                padding, channel_last
            )
91
            if _is_symmetric_padding(padding, num_dims):
92 93 94 95
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
96 97
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
98 99 100 101
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
102
            padding = convert_to_list(padding, num_dims, 'padding')
103 104 105 106 107
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
108
        padding = convert_to_list(padding, num_dims, 'padding')
109 110
    if not all([p >= 0 for p in padding]):
        raise ValueError(
111 112 113 114
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
115 116 117
    return padding, padding_algorithm


118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
134

135
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
136
    if in_dygraph_mode() and op_type == "conv2d":
137 138 139 140 141 142 143
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
144
            groups,
145 146
            data_format,
        )
H
hong 已提交
147
        if bias is not None:
W
wanghuancoder 已提交
148 149 150
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
151
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
152
            if (
153
                _global_flags()['FLAGS_npu_storage_format']
154 155
                and 'npu' in get_all_custom_device_type()
            ):
156 157 158 159 160 161
                with no_grad():
                    bias_storage = _C_ops.npu_identity(
                        bias, 3
                    )  # ACL_FORMAT_NC1HWC0 = 3
                    bias_storage._share_underline_tensor_to(bias)
            return _C_ops.add(pre_bias, bias)
H
hong 已提交
162 163
        else:
            return pre_bias
164 165

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
166 167 168 169 170 171 172 173 174 175
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
176
        if bias is not None:
W
wanghuancoder 已提交
177 178 179 180
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
181 182 183 184
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
185 186 187 188 189 190 191 192 193 194
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
195
        if bias is not None:
W
wanghuancoder 已提交
196 197 198 199
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
200 201 202
        else:
            return pre_bias

Z
zhiboniu 已提交
203
    if in_dynamic_mode():
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
224
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
225
        if bias is not None:
226
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
L
LielinJiang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
240
            "data_format": data_format,
L
LielinJiang 已提交
241
        }
242 243 244
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
245 246 247 248
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
249 250 251
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
252 253
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
254 255 256 257 258 259
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
260 261 262 263 264
        else:
            out = pre_bias
    return out


265 266 267 268 269 270 271 272 273 274 275
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
276
    r"""
W
whs 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
292
        Out = \sigma (W \ast X + b)
W
whs 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
319
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
320 321

    Args:
322
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
323 324
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
325
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
326
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
327
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
328
            contain one integers, (stride_size). Default: 1.
329
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
330 331 332 333 334 335
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
336
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
337 338 339 340 341 342
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
343
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
344 345 346
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
347 348
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
349 350 351
           None by default.

    Returns:
352
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
353 354 355 356 357 358 359
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
376 377 378 379 380 381 382 383
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
384 385 386 387
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
388

389
    channel_last = data_format == "NLC"
W
whs 已提交
390 391
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
392 393
    if len(x.shape) != 3:
        raise ValueError(
394 395 396 397
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
398 399 400
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
401 402 403 404
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
405 406
    if groups <= 0:
        raise ValueError(
407 408 409 410
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
411 412 413 414
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
415 416
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
417 418 419 420
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
421 422
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
423 424 425

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
426

W
whs 已提交
427
    if len(padding) == 2:
428
        padding = [0] * 2 + padding
W
whs 已提交
429
    elif len(padding) == 1:
430
        padding = [0] + padding
W
whs 已提交
431 432
    else:
        raise ValueError(
433 434 435 436
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
437 438 439
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
440 441

    l_type = "conv2d"
442 443

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
444 445 446 447 448 449
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
450 451 452
        l_type = 'depthwise_conv2d'
        use_cudnn = False

453
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
454
    if is_compiled_with_npu():
455
        if num_channels == groups and num_channels == num_filters:
456 457 458 459
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

460
    squeeze_aixs = -3 if channel_last else -2
461
    x = unsqueeze(x, axis=[squeeze_aixs])
462

463
    if in_dygraph_mode():
464 465 466 467 468 469 470 471 472 473 474 475
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
476
            out = _C_ops.depthwise_conv2d(
477 478 479 480 481 482 483 484 485 486 487 488 489
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
490
        if bias is not None:
491
            out = _add_with_axis(out, bias, axis=channel_dim)
492
    elif _in_legacy_dygraph():
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
513
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
514
        if bias is not None:
515
            out = _add_with_axis(out, bias, axis=channel_dim)
W
whs 已提交
516 517 518 519 520 521 522 523 524 525 526
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
527
            "data_format": conv2d_data_format,
W
whs 已提交
528
        }
529 530 531
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
532
        helper = LayerHelper(l_type, **locals())
533
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
534 535
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
536 537 538
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
539
        if bias is not None:
540
            out = _add_with_axis(out, bias, axis=channel_dim)
541
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
542 543 544
    return out


545 546 547 548 549 550 551 552 553 554 555
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
556
    r"""
S
swtkiwi 已提交
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

575
    ..  math::
576

577
        Out = \sigma (W \ast X + b)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

602
        ..  math::
603

604 605
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
606 607

    Args:
608
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
609
            of input is float16 or float32 or float64.
610
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
611
            the number of output channels, g is the number of groups, kH is the filter's
612
            height, kW is the filter's width.
613
        bias (Tensor, optional): The bias with shape [M,].
614
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution.
615
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
616
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
617
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
618 619 620
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
621 622
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
623
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
624
            when `data_format` is `"NHWC"`, `padding` can be in the form
625 626
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
627
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel
628 629
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
630
            Default: dilation = 1.
631
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
632 633 634 635
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
636
        data_format (str, optional): Specify the data format of the input, and the data format of the output
637 638 639
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
640 641
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
642 643 644
           None by default.

    Returns:
645
        A Tensor representing the conv2d result, whose data type is the same with input.
646 647 648 649

    Examples:
        .. code-block:: python

650
          import paddle
651 652
          import paddle.nn.functional as F

653 654
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
655 656 657

          y_var = F.conv2d(x_var, w_var)

658 659
          print(y_var.shape)
          # [2, 6, 6, 6]
660 661 662
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
663 664 665 666
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
667

668
    channel_last = data_format == "NHWC"
669
    channel_dim = -1 if channel_last else 1
670 671
    if len(x.shape) != 4:
        raise ValueError(
672 673 674 675
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
676
    num_channels = x.shape[channel_dim]
677 678
    num_filters = weight.shape[0]
    if num_channels < 0:
679 680 681 682
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
683 684
    if groups <= 0:
        raise ValueError(
685 686 687 688
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
689 690 691 692
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
693 694
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
695 696 697 698
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
699 700
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
701

702 703
    cudnn_version = get_cudnn_version()

704 705 706 707 708
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
709

710 711
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
712 713
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
714 715

    l_type = "conv2d"
716 717 718 719 720
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
721
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
722
        if is_compiled_with_rocm():
723 724 725
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
726 727
    else:
        if in_dygraph_mode():
728 729 730 731 732 733 734
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
735
                groups,
736 737
                data_format,
            )
H
hong 已提交
738
            if bias is not None:
739 740 741 742 743 744 745 746 747 748 749 750 751
                channel_dim = (
                    channel_dim + len(x.shape)
                    if channel_dim < 0
                    else channel_dim
                )
                if len(bias.shape) < len(x.shape):
                    bias = _C_ops.reshape(
                        bias,
                        [1 for i in range(channel_dim)]
                        + bias.shape
                        + [1 for i in range(len(x.shape) - channel_dim - 1)],
                    )
                # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
752
                if (
753
                    _global_flags()['FLAGS_npu_storage_format']
754 755
                    and 'npu' in get_all_custom_device_type()
                ):
756 757 758 759 760 761
                    with no_grad():
                        bias_storage = _C_ops.npu_identity(
                            bias, 3
                        )  # ACL_FORMAT_NC1HWC0 = 3
                        bias_storage._share_underline_tensor_to(bias)
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
762 763 764 765
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
766

767
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
768
    if is_compiled_with_npu():
769
        if num_channels == groups and num_channels == num_filters:
770 771 772 773
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

774 775 776 777 778 779
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
780
        use_cudnn = False
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
813
    r"""
814 815 816 817 818 819 820 821 822 823 824 825 826 827
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
828
        Out = \sigma (W \ast X + b)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

855
           L^\prime_{out} &= (L_{in} - 1) * stride - 2 * padding + dilation * (L_f - 1) + 1 \\
856 857 858 859 860 861 862 863
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
864
          and :math:`L^\prime_{out} + stride`.
865 866 867 868 869 870 871 872 873

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
874
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
875 876 877 878 879 880 881
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
882
             If it is a list/tuple, it must contain one integer. Default: 0.
883 884 885 886 887 888 889
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
890
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
891 892
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
893
            tuple/list, it must contain one integer, `(feature_length)`. None if use
894
            filter_size(shape of weight), padding, and stride to calculate output_size.
895
        data_format (str, optional): Specify the data format of the input, and the data format of the output
896 897 898
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
899 900
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
901 902 903 904 905 906 907 908 909 910 911 912 913
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
914

915
          # shape: (1, 2, 4)
916 917
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
918
          # shape: (2, 1, 2)
919 920 921 922 923 924 925
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
926 927 928 929 930 931 932 933 934 935 936
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
937 938 939 940
                data_format
            )
        )
    channel_last = data_format == "NLC"
941
    channel_dim = -1 if channel_last else 1
942 943
    if len(x.shape) != 3:
        raise ValueError(
944 945 946 947
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
948 949 950

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
951 952 953 954
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
955 956
    if groups <= 0:
        raise ValueError(
957 958 959 960
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
961 962 963 964
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
965 966
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
967 968 969 970 971 972 973 974 975 976

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
977 978 979 980
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
981

982 983
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
984 985 986 987

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
988
        if output_padding != 0:
989 990 991 992
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
993
        if isinstance(output_size, (list, tuple, int)):
994
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
995 996
        else:
            raise ValueError(
997 998
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
999 1000 1001 1002

    if output_padding == 0:
        output_padding = []
    else:
1003 1004 1005
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
1006 1007 1008 1009

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1010
            "But got output_padding={} and stride={}".format(
1011 1012 1013
                output_padding[0], stride[0]
            )
        )
1014 1015 1016

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1017 1018 1019 1020 1021 1022
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1023 1024 1025 1026 1027 1028
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1029 1030
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1031

1032
    if in_dygraph_mode():
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1045
        if bias is not None:
1046
            out = _add_with_axis(out, bias, axis=channel_dim)
1047
    elif _in_legacy_dygraph():
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1068
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1069
        if bias is not None:
1070
            out = _add_with_axis(out, bias, axis=channel_dim)
1071 1072 1073
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1074
            'output_padding': output_padding,
1075 1076 1077 1078 1079 1080 1081
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1082
            'data_format': conv2d_data_format,
1083
        }
1084 1085 1086
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1087
        helper = LayerHelper(op_type, **locals())
1088
        dtype = helper.input_dtype(input_param_name='x')
1089 1090
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1091 1092 1093
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1094
        if bias is not None:
1095
            out = _add_with_axis(out, bias, axis=channel_dim)
1096

1097
    out = squeeze(out, axis=[squeeze_axis])
1098 1099 1100
    return out


1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1114
    r"""
S
swtkiwi 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1127
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1128 1129 1130

    For each input :math:`X`, the equation is:

1131
    ..  math::
1132

1133
        Out = \sigma (W \ast X + b)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1158
        ..  math::
1159

1160 1161 1162
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\
1163 1164 1165
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1166 1167
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1168
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1169 1170 1171
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1172
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1173 1174

    Args:
L
LielinJiang 已提交
1175
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1176
            whose data type is float32 or float64.
L
LielinJiang 已提交
1177
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1178 1179
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1180
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1181 1182
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1183
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1184 1185
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1186
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1187
            it could be in three forms: `[pad_height, pad_width]` or
1188
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1189
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1190
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1191
            when `data_format` is `"NHWC"`, `padding` can be in the form
1192 1193
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1194 1195
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1196
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1197 1198 1199 1200 1201
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1202 1203
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1204
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1205
        output_size(int|tuple|list, optional): The output image size. If output size is a
1206
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1207
            filter_size(shape of weight), padding, and stride to calculate output_size.
1208
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1209 1210 1211
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1212 1213
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1214 1215 1216
           None by default.

    Returns:
1217
        A Tensor representing the conv2d_transpose, whose
1218 1219
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1220
        transposed convolution result.
1221 1222 1223 1224

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1225 1226
          import paddle
          import paddle.nn.functional as F
1227

1228 1229
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1230

1231
          y_var = F.conv2d_transpose(x_var, w_var)
1232

1233 1234
          print(y_var.shape)
          # [2, 6, 10, 10]
1235 1236 1237 1238 1239 1240
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1241 1242 1243 1244
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1245
    channel_dim = -1 if channel_last else 1
1246 1247
    if len(x.shape) != 4:
        raise ValueError(
1248 1249 1250 1251
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1252
    num_channels = x.shape[channel_dim]
1253
    if num_channels < 0:
1254 1255 1256 1257
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1258 1259
    if groups <= 0:
        raise ValueError(
1260 1261 1262 1263
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1264 1265 1266 1267
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1268 1269
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1270 1271 1272

    cudnn_version = get_cudnn_version()

1273 1274 1275 1276 1277
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1278 1279 1280

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1281 1282
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1283

1284 1285 1286
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1287
        if output_padding != 0:
1288 1289 1290 1291
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1292 1293 1294 1295 1296 1297
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1298
            output_size = convert_to_list(output_size, 2, 'output_size')
1299
        elif isinstance(output_size, Variable):
1300 1301 1302 1303 1304 1305 1306 1307 1308
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1309 1310 1311 1312
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1313 1314
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1315 1316
        else:
            raise ValueError(
1317 1318
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1319 1320 1321 1322

    if output_padding == 0:
        output_padding = []
    else:
1323
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1324 1325 1326

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1327
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1328
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1329
        use_cudnn = False
1330

F
From00 已提交
1331
    if in_dygraph_mode():
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1349
        if bias is not None:
1350
            return _add_with_axis(pre_bias, bias, axis=channel_dim)
F
From00 已提交
1351 1352 1353 1354
        else:
            return pre_bias

    if _in_legacy_dygraph():
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1375
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1376
        if bias is not None:
1377
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
1378
        else:
L
LielinJiang 已提交
1379
            out = pre_bias
1380
    else:
L
LielinJiang 已提交
1381
        inputs = {'Input': [x], 'Filter': [weight]}
1382
        attrs = {
L
LielinJiang 已提交
1383
            'output_padding': output_padding,
1384 1385 1386 1387 1388 1389 1390
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1391
            'data_format': data_format,
1392
        }
1393 1394 1395
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1396
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1397
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1398
        outputs = {"Output": [pre_bias]}
1399 1400 1401
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1402

1403
        if bias is not None:
1404
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
1405
        else:
L
LielinJiang 已提交
1406 1407
            out = pre_bias

1408 1409 1410
    return out


1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1422
    r"""
S
swtkiwi 已提交
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1435
    ..  math::
1436

1437
        Out = \sigma (W \ast X + b)
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1461
        ..  math::
1462

1463 1464 1465
            D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\
            H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
1466 1467

    Args:
1468
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1469
            type of input is float16 or float32 or float64.
1470
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1471 1472
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1473
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1474 1475
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1476
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1477
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1478 1479 1480 1481
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1482
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1483
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1484
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1485 1486
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1487
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1488
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1489
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1490
            Default: dilation = 1.
1491
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1492 1493 1494 1495
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1496
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1497 1498 1499
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1500 1501
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1502 1503 1504
           None by default.

    Returns:
1505 1506 1507
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1508 1509 1510 1511 1512
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1513 1514
            import paddle
            import paddle.nn.functional as F
1515

1516 1517
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1518

1519
            y_var = F.conv3d(x_var, w_var)
1520

1521 1522
            print(y_var.shape)
            # [2, 6, 6, 6, 6]
1523 1524 1525 1526 1527
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1528 1529
            "Attr(data_format): {}.".format(data_format)
        )
1530

1531
    channel_last = data_format == "NDHWC"
1532
    channel_dim = -1 if channel_last else 1
1533 1534
    if len(x.shape) != 5:
        raise ValueError(
1535 1536 1537 1538
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1539
    num_channels = x.shape[channel_dim]
1540 1541 1542
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1543
            "The channel dimension of the input({}) should be defined. "
1544 1545
            "Received: {}.".format(x.shape, num_channels)
        )
1546 1547
    if groups <= 0:
        raise ValueError(
1548 1549 1550 1551
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1552 1553 1554
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1555
            "Received: number of channels({}), groups({}).".format(
1556 1557 1558
                num_channels, groups
            )
        )
1559 1560 1561
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1562
            "Received: number of filters({}), groups({}).".format(
1563 1564 1565
                num_filters, groups
            )
        )
1566

1567
    cudnn_version = get_cudnn_version()
1568 1569 1570 1571 1572
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1573

1574
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1575 1576
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1577 1578
    op_type = "conv3d"

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1610
    r"""
L
LielinJiang 已提交
1611
    The convolution3d transpose layer calculates the output based on the input,
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1622
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1623 1624 1625

    For each input :math:`X`, the equation is:

1626
    ..  math::
1627

1628
        Out = \sigma (W \ast X + b)
1629 1630 1631 1632

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
1633 1634
    * :math:`W`: Filter value, a Tensor with NCDHW format.
    * :math:`\ast`: Convolution operation.
1635
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
1636
    * :math:`\sigma`: Activation function.
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1653
        ..  math::
1654

1655 1656 1657 1658 1659
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\
1660 1661 1662
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1663 1664 1665 1666 1667 1668 1669 1670 1671
        The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
        when stride > 1, conv3d maps multiple input shape to the same output shape,
        so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
        If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
        else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}` and
        :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must
        between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the
        :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and
        :math:`W^\prime_{out} + strides[2]`.
1672 1673

    Args:
1674
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1675
            of input is float32 or float64.
L
LielinJiang 已提交
1676
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1677
            where M is the number of filters (output channels), g is the number of groups,
1678
            kD, kH, kW are the filter's depth, height and width respectively.
1679 1680
        bias (Tensor, optional): The bias, a Tensor of shape [M, ]. Default: None.
        stride (int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
1681 1682
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
1683 1684
            Default: 1.
        padding (str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1685 1686 1687
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1688
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1689
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1690
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1691
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1692
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1693 1694
            Default: 0.
        output_padding (int|list|tuple, optional): Additional size added to one side
L
LielinJiang 已提交
1695
            of each dimension in the output shape. Default: 0.
1696 1697 1698
        groups (int, optional): The groups number of the Conv3D transpose layer. Inspired by
            grouped convolution in `Alex Krizhevsky's Deep CNN paper <https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_, in which
            when groups = 2, the first half of the filters is only connected to the
1699 1700
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
1701 1702
            Default: 1.
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1703 1704
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1705 1706
            Default: 1.
        output_size (int|list|tuple, optional): The output image size. If output size is a
1707
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1708
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1709
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1710
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
1711 1712 1713 1714 1715
            When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            Default: `"NCHW"`.
        name (str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set.
           Default: None.
1716 1717

    Returns:
1718
        A Tensor representing the conv3d_transpose, whose data
1719 1720 1721
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1722 1723 1724 1725
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1726

L
LielinJiang 已提交
1727
          import paddle
1728 1729
          import paddle.nn.functional as F

1730 1731
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1732

1733
          y_var = F.conv3d_transpose(x_var, w_var)
1734

1735 1736
          print(y_var.shape)
          # [2, 6, 10, 10, 10]
1737 1738 1739 1740 1741
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1742 1743
            "Attr(data_format): {}.".format(data_format)
        )
1744

1745
    channel_last = data_format == "NDHWC"
1746
    channel_dim = -1 if channel_last else 1
1747 1748
    if len(x.shape) != 5:
        raise ValueError(
1749 1750 1751 1752
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1753
    num_channels = x.shape[channel_dim]
1754 1755 1756
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1757
            "The channel dimension of the input({}) should be defined. "
1758 1759
            "Received: {}.".format(x.shape, num_channels)
        )
1760 1761
    if groups <= 0:
        raise ValueError(
1762 1763 1764 1765
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1766 1767 1768
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1769
            "Received: number of channels({}), groups({}).".format(
1770 1771 1772
                num_channels, groups
            )
        )
1773 1774

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1775 1776
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1777 1778 1779
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1780
        if output_padding != 0:
1781 1782 1783 1784
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1785
        if isinstance(output_size, (list, tuple, int)):
1786
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1787 1788
        else:
            raise ValueError(
1789 1790
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1791 1792 1793 1794

    if output_padding == 0:
        output_padding = []
    else:
1795
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1796 1797 1798

    cudnn_version = get_cudnn_version()

1799 1800 1801 1802 1803 1804
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1805 1806 1807 1808

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1809
    if in_dygraph_mode():
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1822
        if bias is not None:
1823
            return _add_with_axis(pre_bias, bias, axis=channel_dim)
F
From00 已提交
1824 1825 1826 1827
        else:
            return pre_bias

    if _in_legacy_dygraph():
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1848
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1849
        if bias is not None:
1850
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
1851
        else:
L
LielinJiang 已提交
1852
            out = pre_bias
1853
    else:
L
LielinJiang 已提交
1854
        inputs = {'Input': [x], 'Filter': [weight]}
1855
        attrs = {
L
LielinJiang 已提交
1856
            'output_padding': output_padding,
1857 1858 1859 1860 1861 1862 1863
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1864
            "data_format": data_format_,
1865 1866
        }
        helper = LayerHelper(op_type, **locals())
1867 1868 1869
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1870

L
LielinJiang 已提交
1871
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1872 1873
        outputs = {"Output": [pre_bias]}

1874 1875 1876
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1877
        if bias is not None:
1878
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
1879
        else:
L
LielinJiang 已提交
1880
            out = pre_bias
1881 1882

    return out