conv.py 71.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
21
from ...fluid.data_feeder import check_variable_and_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
F
From00 已提交
27 28 29
from paddle import _C_ops
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
82 83
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
84
            if _is_symmetric_padding(padding, num_dims):
85 86 87 88
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
89 90
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95
            padding = convert_to_list(padding, num_dims, 'padding')
96 97 98 99 100
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
101
        padding = convert_to_list(padding, num_dims, 'padding')
102 103
    if not all([p >= 0 for p in padding]):
        raise ValueError(
104 105
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
106 107 108
    return padding, padding_algorithm


L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

124
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
125
    if in_dygraph_mode() and op_type == "conv2d":
126 127 128 129
        pre_bias = _C_ops.final_state_conv2d(x, weight, stride, padding,
                                             padding_algorithm, groups,
                                             dilation, data_format, False, -1,
                                             False)
H
hong 已提交
130
        if bias is not None:
131 132
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
133 134 135 136
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
137 138 139 140 141 142 143
            if len(bias.shape) < len(x.shape):
                tmp_bias = _C_ops.final_state_reshape(
                    bias, bias.shape +
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
                return _C_ops.final_state_add(pre_bias, tmp_bias)
            else:
                return _C_ops.final_state_add(pre_bias, bias)
H
hong 已提交
144 145
        else:
            return pre_bias
146 147 148 149

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
        pre_bias = _C_ops.final_state_depthwise_conv2d(
            x, weight, stride, padding, padding_algorithm, groups, dilation,
150
            data_format, False, -1, False, False, use_cudnn)
151 152 153 154
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
            tmp_bias = _C_ops.final_state_reshape(
155 156
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
157 158 159 160 161
            return _C_ops.final_state_add(pre_bias, tmp_bias)
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
162 163 164 165
        pre_bias = _C_ops.final_state_conv3d(x, weight, stride, padding,
                                             padding_algorithm, groups,
                                             dilation, data_format, False, -1,
                                             False)
166 167 168 169
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
            tmp_bias = _C_ops.final_state_reshape(
170 171
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
172 173 174 175
            return _C_ops.final_state_add(pre_bias, tmp_bias)
        else:
            return pre_bias

Z
zhiboniu 已提交
176
    if in_dynamic_mode():
L
LielinJiang 已提交
177 178 179 180 181
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
W
wanghuancoder 已提交
182
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
206 207 208 209
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
210 211
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
212 213 214 215 216 217 218 219 220 221
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
222 223 224 225 226
        else:
            out = pre_bias
    return out


W
whs 已提交
227 228 229 230 231 232 233 234 235
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
236
    r"""
W
whs 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
252
        Out = \sigma (W \ast X + b)
W
whs 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
279
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
280 281 282 283 284 285 286

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
287
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
288
            contain one integers, (stride_size). Default: 1.
289
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
290 291 292 293 294 295
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
296
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
316
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
317 318
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
319
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
343
          
W
whs 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
363
    channel_last = (data_format == "NLC")
W
whs 已提交
364 365
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
366 367 368 369
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
370 371 372
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
373
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
374 375
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
376 377
    if groups <= 0:
        raise ValueError(
378 379
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
393

W
whs 已提交
394
    if len(padding) == 2:
395
        padding = [0] * 2 + padding
W
whs 已提交
396
    elif len(padding) == 1:
397
        padding = [0] + padding
W
whs 已提交
398 399
    else:
        raise ValueError(
400 401
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
402 403 404
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
405 406

    l_type = "conv2d"
407 408

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
409 410
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
411 412 413
        l_type = 'depthwise_conv2d'
        use_cudnn = False

414
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
415
    if is_compiled_with_npu():
416 417 418 419 420
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

421
    squeeze_aixs = -3 if channel_last else -2
422
    x = unsqueeze(x, axis=[squeeze_aixs])
423

Z
zhiboniu 已提交
424
    if in_dynamic_mode():
W
whs 已提交
425 426 427 428
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
W
wanghuancoder 已提交
429
        out = getattr(_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
448
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
449 450
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
451 452 453 454
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
455 456
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
457
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
458 459 460
    return out


461
def conv2d(x,
462 463 464
           weight,
           bias=None,
           stride=1,
465
           padding=0,
466 467 468 469
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
470
    r"""
S
swtkiwi 已提交
471

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

489
    ..  math::
490

491
        Out = \sigma (W \ast X + b)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

516
        ..  math::
517

518 519
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
520 521

    Args:
522
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
523
            of input is float16 or float32 or float64.
524
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
525 526
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
527
        bias (Tensor, optional): The bias with shape [M,].
528 529
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
530
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
531 532 533 534 535 536 537
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
538
            when `data_format` is `"NHWC"`, `padding` can be in the form
539 540
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
541 542
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
543 544
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
545
        groups (int): The groups number of the Conv2D Layer. According to grouped
546 547 548 549 550 551 552 553 554 555 556 557 558
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
559
        A Tensor representing the conv2d result, whose data type is the same with input. 
560 561 562

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
563
        ValueError: If the channel dimension of the input is less than or equal to zero.
564
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
565
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
566 567 568 569 570 571 572 573 574 575
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

576
          import paddle
577 578
          import paddle.nn.functional as F

579 580
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
581 582 583 584

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

585 586 587 588 589 590 591 592 593 594
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
595 596 597 598
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
599
    num_channels = x.shape[channel_dim]
600 601
    num_filters = weight.shape[0]
    if num_channels < 0:
602
        raise ValueError("The channel dimension of the input({}) "
603
                         "should be defined. Received: {}.".format(
604
                             x.shape, num_channels))
605 606
    if groups <= 0:
        raise ValueError(
607 608
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
609 610 611 612
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
613
            ", the groups is {}".format(num_channels, x.shape, groups))
614 615 616 617 618 619
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

620 621
    cudnn_version = get_cudnn_version()

622 623
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
624

625 626
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
627 628
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
629 630

    l_type = "conv2d"
631 632
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
633
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
634
        if is_compiled_with_rocm():
635 636 637
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
638 639
    else:
        if in_dygraph_mode():
640 641 642 643
            pre_bias = _C_ops.final_state_conv2d(x, weight, stride, padding,
                                                 padding_algorithm, groups,
                                                 dilation, data_format, False,
                                                 -1, False)
H
hong 已提交
644 645 646 647 648 649 650
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
651

652
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
653
    if is_compiled_with_npu():
654 655 656 657 658
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

659 660
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
661
        use_cudnn = False
662

L
LielinJiang 已提交
663 664 665
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
666 667


668
def conv1d_transpose(x,
669 670 671 672 673 674 675 676 677 678
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
679
    r"""
680 681 682 683 684 685 686 687 688 689 690 691 692 693
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
694
        Out = \sigma (W \ast X + b)
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
730
          and :math:`L^\prime_{out} + stride`.
731 732 733 734 735 736 737 738 739

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
740
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
741 742 743 744 745 746 747
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
748
             If it is a list/tuple, it must contain one integer. Default: 0.
749 750 751 752 753 754 755
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
756
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
757 758
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
759
            tuple/list, it must contain one integer, `(feature_length)`. None if use
760
            filter_size(shape of weight), padding, and stride to calculate output_size.
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
778
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
801
          w=np.array([[[7, 0]],
802 803 804
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
805
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
806
          print(y_var)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
823 824 825 826
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
827 828 829

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
830
        raise ValueError("The channel dimension of the input({}) "
831 832
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
833 834
    if groups <= 0:
        raise ValueError(
835 836
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
852
            "The size of padding's dimension should 1 or 2. But got padding={}".
853 854
            format(padding))

855 856
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
857 858 859 860

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
861 862 863 864
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
865
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
866 867 868 869 870 871 872
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
873 874
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
875 876 877 878

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
879 880
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
881 882 883

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
884 885
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
886 887 888 889 890 891
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

892 893
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
894

Z
zhiboniu 已提交
895
    if in_dynamic_mode():
L
LielinJiang 已提交
896 897 898 899
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
W
wanghuancoder 已提交
900
        out = getattr(_C_ops, op_type)(x, weight, *attrs)
901 902 903 904 905
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
906
            'output_padding': output_padding,
907 908 909 910 911 912 913 914 915 916 917 918
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
919
        dtype = helper.input_dtype(input_param_name='x')
920 921
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
922 923 924 925
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
926 927 928
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

929
    out = squeeze(out, axis=[squeeze_axis])
930 931 932
    return out


933
def conv2d_transpose(x,
934 935 936
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
937 938 939
                     padding=0,
                     output_padding=0,
                     dilation=1,
940
                     groups=1,
L
LielinJiang 已提交
941
                     output_size=None,
942
                     data_format='NCHW',
943
                     name=None):
944
    r"""
S
swtkiwi 已提交
945

946 947 948 949 950 951 952 953 954 955 956
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
957
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
958 959 960

    For each input :math:`X`, the equation is:

961
    ..  math::
962

963
        Out = \sigma (W \ast X + b)
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

988
        ..  math::
989 990 991 992 993 994 995 996 997 998 999 1000 1001

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
1002
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1003 1004

    Args:
L
LielinJiang 已提交
1005
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1006
            whose data type is float32 or float64.
L
LielinJiang 已提交
1007
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1008 1009
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1010 1011
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1012
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
1013
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1014 1015 1016 1017 1018
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1019
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
1020
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1021
            when `data_format` is `"NHWC"`, `padding` can be in the form 
1022 1023
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1024 1025
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1026
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1027 1028 1029 1030 1031
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1032
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1033
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
1034
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1035
        output_size(int|tuple|list, optional): The output image size. If output size is a
1036
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1037
            filter_size(shape of weight), padding, and stride to calculate output_size.
1038 1039 1040 1041 1042 1043 1044 1045 1046
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1047
        A Tensor representing the conv2d_transpose, whose
1048
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
1049 1050
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
1051 1052 1053 1054

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1055
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1056
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1057
        ValueError: If `output_size` and kernel_size are None at the same time.
1058 1059 1060 1061 1062 1063 1064 1065 1066
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1067 1068
          import paddle
          import paddle.nn.functional as F
1069

1070 1071
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1072

1073
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1074
          y_np = y_var.numpy()
1075

1076
          print(y_np.shape)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1087 1088 1089 1090
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1091
    num_channels = x.shape[channel_dim]
1092
    if num_channels < 0:
1093
        raise ValueError("The channel dimension of the input({}) "
1094
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1095
                             x.shape, num_channels))
1096 1097
    if groups <= 0:
        raise ValueError(
1098 1099
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1100 1101 1102 1103
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1104 1105 1106 1107
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1108 1109
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1110 1111 1112

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1113 1114
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1115

1116 1117 1118
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1119 1120 1121 1122
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1123
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1124 1125 1126 1127 1128 1129 1130
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1131
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1132 1133 1134

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1135
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1136
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1137
        use_cudnn = False
1138

F
From00 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    if in_dygraph_mode():
        final_state_op = _C_ops.final_state_conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.final_state_depthwise_conv2d_transpose
        pre_bias = final_state_op(x, weight, stride, padding, output_padding,
                                  output_size, padding_algorithm, groups,
                                  dilation, data_format)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1150 1151 1152 1153
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
W
wanghuancoder 已提交
1154
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1155
        if bias is not None:
L
LielinJiang 已提交
1156
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1157
        else:
L
LielinJiang 已提交
1158
            out = pre_bias
1159
    else:
L
LielinJiang 已提交
1160
        inputs = {'Input': [x], 'Filter': [weight]}
1161
        attrs = {
L
LielinJiang 已提交
1162
            'output_padding': output_padding,
1163 1164 1165 1166 1167 1168 1169 1170 1171
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1172
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1173 1174
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1175
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1176
        outputs = {"Output": [pre_bias]}
1177 1178 1179 1180
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1181

1182
        if bias is not None:
L
LielinJiang 已提交
1183
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1184
        else:
L
LielinJiang 已提交
1185 1186
            out = pre_bias

1187 1188 1189
    return out


1190
def conv3d(x,
1191 1192 1193
           weight,
           bias=None,
           stride=1,
1194
           padding=0,
1195 1196 1197 1198
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1199
    r"""
S
swtkiwi 已提交
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1212
    ..  math::
1213

1214
        Out = \sigma (W \ast X + b)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1238
        ..  math::
1239 1240 1241 1242 1243 1244

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1245
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1246
            type of input is float16 or float32 or float64.
1247
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1248 1249
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1250
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1251
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a 
1252
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1253
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1254
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
1255 1256 1257 1258
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1259
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1260
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1261
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1262 1263
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1264
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1265
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1266 1267
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1268
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1269 1270 1271 1272 1273
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
1274 1275 1276 1277
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str|None, optional): For detailed information, please refer 
1278 1279 1280 1281
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1282
        A Tensor representing the conv3d, whose data type is 
1283 1284
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1285 1286 1287 1288 1289
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1290 1291
            import paddle
            import paddle.nn.functional as F
1292

1293 1294
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1295

1296 1297
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1298

1299
            print(y_np.shape)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1310 1311 1312 1313
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1314
    num_channels = x.shape[channel_dim]
1315 1316 1317
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1318
            "The channel dimension of the input({}) should be defined. "
1319
            "Received: {}.".format(x.shape, num_channels))
1320 1321
    if groups <= 0:
        raise ValueError(
1322 1323
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1324 1325 1326
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1327 1328
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1329 1330 1331
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1332 1333
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1334

1335
    cudnn_version = get_cudnn_version()
1336 1337
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1338

1339
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1340 1341
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1342 1343
    op_type = "conv3d"

L
LielinJiang 已提交
1344 1345 1346
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1347 1348


1349
def conv3d_transpose(x,
1350 1351 1352
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1353 1354
                     padding=0,
                     output_padding=0,
1355
                     groups=1,
L
LielinJiang 已提交
1356 1357
                     dilation=1,
                     output_size=None,
1358
                     data_format='NCDHW',
1359
                     name=None):
1360
    r"""
L
LielinJiang 已提交
1361
    The convolution3d transpose layer calculates the output based on the input,
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1372
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1373 1374 1375

    For each input :math:`X`, the equation is:

1376
    ..  math::
1377

1378
        Out = \sigma (W \ast X + b)
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1403
        ..  math::
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1421
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1422 1423

    Args:
L
LielinJiang 已提交
1424
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1425
            of input is float32 or float64.
L
LielinJiang 已提交
1426
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1427 1428
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1429 1430
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1431
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1432 1433
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1434 1435 1436 1437
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1438
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1439
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1440
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1441
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1442 1443
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1444 1445
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1446
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1447 1448 1449 1450 1451
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1452
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1453
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1454 1455
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1456
        output_size(int|list|tuple, optional): The output image size. If output size is a
1457
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1458
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1459 1460 1461 1462
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1463 1464 1465 1466 1467
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1468
        A Tensor representing the conv3d_transpose, whose data
1469 1470 1471 1472 1473 1474 1475 1476
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1477
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1478
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1479
        ValueError: If `output_size` and kernel_size are None at the same time.
1480 1481 1482 1483 1484 1485 1486 1487
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1488 1489
          
          import paddle
1490 1491
          import paddle.nn.functional as F

1492 1493
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1494

1495
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1496
          y_np = y_var.numpy()
1497

1498
          print(y_np.shape)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1509 1510 1511 1512
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1513
    num_channels = x.shape[channel_dim]
1514 1515 1516
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1517
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1518
            "Received: {}.".format(x.shape, num_channels))
1519 1520
    if groups <= 0:
        raise ValueError(
1521 1522
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1523 1524 1525
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1526 1527
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1528 1529

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1530 1531
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1532 1533 1534
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1535 1536 1537 1538
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1539
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1540 1541 1542 1543 1544 1545 1546
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1547
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1548 1549 1550 1551

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1552 1553
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1554 1555 1556 1557

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    if in_dygraph_mode():
        pre_bias = _C_ops.final_state_conv3d_transpose(
            x, weight, stride, padding, output_padding, output_size,
            padding_algorithm, groups, dilation, data_format_)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1568 1569 1570 1571
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
W
wanghuancoder 已提交
1572
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1573
        if bias is not None:
L
LielinJiang 已提交
1574
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1575
        else:
L
LielinJiang 已提交
1576
            out = pre_bias
1577
    else:
L
LielinJiang 已提交
1578
        inputs = {'Input': [x], 'Filter': [weight]}
1579
        attrs = {
L
LielinJiang 已提交
1580
            'output_padding': output_padding,
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1591 1592
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1593

L
LielinJiang 已提交
1594
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1595 1596
        outputs = {"Output": [pre_bias]}

1597 1598 1599 1600
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1601
        if bias is not None:
L
LielinJiang 已提交
1602
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1603
        else:
L
LielinJiang 已提交
1604
            out = pre_bias
1605 1606

    return out