conv.py 70.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

L
LielinJiang 已提交
15
from ...device import get_cudnn_version
16
from ...static import Variable
17 18 19 20 21 22
from ...fluid.layers.utils import (
    convert_to_list,
    _is_symmetric_padding,
    _contain_var,
    _convert_to_tensor_list,
)
23
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
24
from ...fluid.layer_helper import LayerHelper
25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
64 65 66 67
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
68 69 70 71 72 73 74 75 76 77 78 79 80 81
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
82 83
                    "is not supported.".format(padding)
                )
84
            padding_algorithm = "EXPLICIT"
85
            padding = _exclude_padding_in_batch_and_channel(
86 87
                padding, channel_last
            )
88
            if _is_symmetric_padding(padding, num_dims):
89 90 91 92
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
93 94
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
95 96 97 98
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
99
            padding = convert_to_list(padding, num_dims, 'padding')
100 101 102 103 104
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
105
        padding = convert_to_list(padding, num_dims, 'padding')
106 107
    if not all([p >= 0 for p in padding]):
        raise ValueError(
108 109 110 111
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
112 113 114
    return padding, padding_algorithm


115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
131

132
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
133
    if in_dygraph_mode() and op_type == "conv2d":
134 135 136 137 138 139 140
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
141
            groups,
142 143
            data_format,
        )
H
hong 已提交
144
        if bias is not None:
145 146 147
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
148 149 150 151
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
152
            if len(bias.shape) < len(x.shape):
153
                tmp_bias = _C_ops.reshape(
154 155 156 157 158
                    bias,
                    [1 for i in range(channel_dim)]
                    + bias.shape
                    + [1 for i in range(len(x.shape) - channel_dim - 1)],
                )
159
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
160
            else:
161
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
162 163
        else:
            return pre_bias
164 165

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
166 167 168 169 170 171 172 173 174 175
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
176
        if bias is not None:
177 178 179
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
180
            tmp_bias = _C_ops.reshape(
181 182 183 184 185
                bias,
                [1 for i in range(channel_dim)]
                + bias.shape
                + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
186
            return _C_ops.add(pre_bias, tmp_bias)
187 188 189 190
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
191 192 193 194 195 196 197 198 199 200
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
201
        if bias is not None:
202 203 204
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
205
            tmp_bias = _C_ops.reshape(
206
                bias,
207 208
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
209
            return _C_ops.add(pre_bias, tmp_bias)
210 211 212
        else:
            return pre_bias

Z
zhiboniu 已提交
213
    if in_dynamic_mode():
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
234
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
250
            "data_format": data_format,
L
LielinJiang 已提交
251
        }
252 253 254
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
255 256 257 258
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
259 260 261
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
262 263
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
264 265 266 267 268 269
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
270 271 272 273 274
        else:
            out = pre_bias
    return out


275 276 277 278 279 280 281 282 283 284 285
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
286
    r"""
W
whs 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
302
        Out = \sigma (W \ast X + b)
W
whs 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
329
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
330 331

    Args:
332
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
333 334
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
335
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
336
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
337
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
338
            contain one integers, (stride_size). Default: 1.
339
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
340 341 342 343 344 345
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
346
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
347 348 349 350 351 352
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
353
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
354 355 356
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
357 358
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
359 360 361
           None by default.

    Returns:
362
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
363 364 365 366 367 368 369
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
386 387 388 389 390 391 392 393
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
394 395 396 397
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
398

399
    channel_last = data_format == "NLC"
W
whs 已提交
400 401
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
402 403
    if len(x.shape) != 3:
        raise ValueError(
404 405 406 407
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
408 409 410
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
411 412 413 414
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
415 416
    if groups <= 0:
        raise ValueError(
417 418 419 420
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
421 422 423 424
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
425 426
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
427 428 429 430
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
431 432
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
433 434 435

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
436

W
whs 已提交
437
    if len(padding) == 2:
438
        padding = [0] * 2 + padding
W
whs 已提交
439
    elif len(padding) == 1:
440
        padding = [0] + padding
W
whs 已提交
441 442
    else:
        raise ValueError(
443 444 445 446
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
447 448 449
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
450 451

    l_type = "conv2d"
452 453

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
454 455 456 457 458 459
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
460 461 462
        l_type = 'depthwise_conv2d'
        use_cudnn = False

463
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
464
    if is_compiled_with_npu():
465
        if num_channels == groups and num_channels == num_filters:
466 467 468 469
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

470
    squeeze_aixs = -3 if channel_last else -2
471
    x = unsqueeze(x, axis=[squeeze_aixs])
472

473
    if in_dygraph_mode():
474 475 476 477 478 479 480 481 482 483 484 485
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
486
            out = _C_ops.depthwise_conv2d(
487 488 489 490 491 492 493 494 495 496 497 498 499
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
500 501 502
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
523
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
537
            "data_format": conv2d_data_format,
W
whs 已提交
538
        }
539 540 541
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
542
        helper = LayerHelper(l_type, **locals())
543
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
544 545
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
546 547 548
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
549 550
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
551
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
552 553 554
    return out


555 556 557 558 559 560 561 562 563 564 565
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
566
    r"""
S
swtkiwi 已提交
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

585
    ..  math::
586

587
        Out = \sigma (W \ast X + b)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

612
        ..  math::
613

614 615
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
616 617

    Args:
618
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
619
            of input is float16 or float32 or float64.
620
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
621
            the number of output channels, g is the number of groups, kH is the filter's
622
            height, kW is the filter's width.
623
        bias (Tensor, optional): The bias with shape [M,].
624 625
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
626
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
627 628 629 630
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
631 632
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
633
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
634
            when `data_format` is `"NHWC"`, `padding` can be in the form
635 636
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
637
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
638 639
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
640
            Default: dilation = 1.
C
cnn 已提交
641
        groups (int): The groups number of the Conv2D Layer. According to grouped
642 643 644 645
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
646
        data_format (str, optional): Specify the data format of the input, and the data format of the output
647 648 649
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
650 651
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
652 653 654
           None by default.

    Returns:
655
        A Tensor representing the conv2d result, whose data type is the same with input.
656 657 658 659

    Examples:
        .. code-block:: python

660
          import paddle
661 662
          import paddle.nn.functional as F

663 664
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
665 666 667 668

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

669 670 671 672 673
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
674 675 676 677
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
678

679
    channel_last = data_format == "NHWC"
680
    channel_dim = -1 if channel_last else 1
681 682
    if len(x.shape) != 4:
        raise ValueError(
683 684 685 686
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
687
    num_channels = x.shape[channel_dim]
688 689
    num_filters = weight.shape[0]
    if num_channels < 0:
690 691 692 693
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
694 695
    if groups <= 0:
        raise ValueError(
696 697 698 699
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
700 701 702 703
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
704 705
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
706 707 708 709
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
710 711
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
712

713 714
    cudnn_version = get_cudnn_version()

715 716 717 718 719
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
720

721 722
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
723 724
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
725 726

    l_type = "conv2d"
727 728 729 730 731
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
732
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
733
        if is_compiled_with_rocm():
734 735 736
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
737 738
    else:
        if in_dygraph_mode():
739 740 741 742 743 744 745
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
746
                groups,
747 748
                data_format,
            )
H
hong 已提交
749 750 751 752 753 754 755
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
756

757
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
758
    if is_compiled_with_npu():
759
        if num_channels == groups and num_channels == num_filters:
760 761 762 763
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

764 765 766 767 768 769
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
770
        use_cudnn = False
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
803
    r"""
804 805 806 807 808 809 810 811 812 813 814 815 816 817
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
818
        Out = \sigma (W \ast X + b)
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
854
          and :math:`L^\prime_{out} + stride`.
855 856 857 858 859 860 861 862 863

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
864
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
865 866 867 868 869 870 871
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
872
             If it is a list/tuple, it must contain one integer. Default: 0.
873 874 875 876 877 878 879
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
880
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
881 882
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
883
            tuple/list, it must contain one integer, `(feature_length)`. None if use
884
            filter_size(shape of weight), padding, and stride to calculate output_size.
885
        data_format (str, optional): Specify the data format of the input, and the data format of the output
886 887 888
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
889 890
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
891 892 893 894 895 896 897 898 899 900 901 902 903
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
904

905
          # shape: (1, 2, 4)
906 907
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
908
          # shape: (2, 1, 2)
909 910 911 912 913 914 915
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
916 917 918 919 920 921 922 923 924 925 926
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
927 928 929 930
                data_format
            )
        )
    channel_last = data_format == "NLC"
931
    channel_dim = -1 if channel_last else 1
932 933
    if len(x.shape) != 3:
        raise ValueError(
934 935 936 937
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
938 939 940

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
941 942 943 944
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
945 946
    if groups <= 0:
        raise ValueError(
947 948 949 950
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
951 952 953 954
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
955 956
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
957 958 959 960 961 962 963 964 965 966

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
967 968 969 970
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
971

972 973
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
974 975 976 977

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
978
        if output_padding != 0:
979 980 981 982
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
983
        if isinstance(output_size, (list, tuple, int)):
984
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
985 986
        else:
            raise ValueError(
987 988
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
989 990 991 992

    if output_padding == 0:
        output_padding = []
    else:
993 994 995
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
996 997 998 999

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1000
            "But got output_padding={} and stride={}".format(
1001 1002 1003
                output_padding[0], stride[0]
            )
        )
1004 1005 1006

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1007 1008 1009 1010 1011 1012
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1013 1014 1015 1016 1017 1018
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1019 1020
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1021

1022
    if in_dygraph_mode():
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1035 1036 1037
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1058
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1059 1060 1061 1062 1063
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1064
            'output_padding': output_padding,
1065 1066 1067 1068 1069 1070 1071
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1072
            'data_format': conv2d_data_format,
1073
        }
1074 1075 1076
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1077
        helper = LayerHelper(op_type, **locals())
1078
        dtype = helper.input_dtype(input_param_name='x')
1079 1080
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1081 1082 1083
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1084 1085 1086
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1087
    out = squeeze(out, axis=[squeeze_axis])
1088 1089 1090
    return out


1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1104
    r"""
S
swtkiwi 已提交
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1117
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1118 1119 1120

    For each input :math:`X`, the equation is:

1121
    ..  math::
1122

1123
        Out = \sigma (W \ast X + b)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1148
        ..  math::
1149 1150 1151 1152 1153 1154 1155

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1156 1157
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1158
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1159 1160 1161
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1162
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1163 1164

    Args:
L
LielinJiang 已提交
1165
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1166
            whose data type is float32 or float64.
L
LielinJiang 已提交
1167
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1168 1169
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1170
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1171 1172
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1173
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1174 1175
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1176
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1177
            it could be in three forms: `[pad_height, pad_width]` or
1178
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1179
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1180
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1181
            when `data_format` is `"NHWC"`, `padding` can be in the form
1182 1183
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1184 1185
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1186
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1187 1188 1189 1190 1191
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1192 1193
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1194
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1195
        output_size(int|tuple|list, optional): The output image size. If output size is a
1196
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1197
            filter_size(shape of weight), padding, and stride to calculate output_size.
1198
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1199 1200 1201
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1202 1203
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1204 1205 1206
           None by default.

    Returns:
1207
        A Tensor representing the conv2d_transpose, whose
1208 1209
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1210
        transposed convolution result.
1211 1212 1213 1214

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1215 1216
          import paddle
          import paddle.nn.functional as F
1217

1218 1219
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1220

1221
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1222
          y_np = y_var.numpy()
1223

1224
          print(y_np.shape)
1225 1226 1227 1228 1229 1230 1231
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1232 1233 1234 1235
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1236
    channel_dim = -1 if channel_last else 1
1237 1238
    if len(x.shape) != 4:
        raise ValueError(
1239 1240 1241 1242
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1243
    num_channels = x.shape[channel_dim]
1244
    if num_channels < 0:
1245 1246 1247 1248
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1249 1250
    if groups <= 0:
        raise ValueError(
1251 1252 1253 1254
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1255 1256 1257 1258
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1259 1260
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1261 1262 1263

    cudnn_version = get_cudnn_version()

1264 1265 1266 1267 1268
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1269 1270 1271

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1272 1273
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1274

1275 1276 1277
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1278
        if output_padding != 0:
1279 1280 1281 1282
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1283 1284 1285 1286 1287 1288
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1289
            output_size = convert_to_list(output_size, 2, 'output_size')
1290
        elif isinstance(output_size, Variable):
1291 1292 1293 1294 1295 1296 1297 1298 1299
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1300 1301 1302 1303
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1304 1305
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1306 1307
        else:
            raise ValueError(
1308 1309
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1310 1311 1312 1313

    if output_padding == 0:
        output_padding = []
    else:
1314
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1315 1316 1317

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1318
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1319
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1320
        use_cudnn = False
1321

F
From00 已提交
1322
    if in_dygraph_mode():
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1340 1341 1342 1343 1344 1345
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1366
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1367
        if bias is not None:
L
LielinJiang 已提交
1368
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1369
        else:
L
LielinJiang 已提交
1370
            out = pre_bias
1371
    else:
L
LielinJiang 已提交
1372
        inputs = {'Input': [x], 'Filter': [weight]}
1373
        attrs = {
L
LielinJiang 已提交
1374
            'output_padding': output_padding,
1375 1376 1377 1378 1379 1380 1381
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1382
            'data_format': data_format,
1383
        }
1384 1385 1386
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1387
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1388
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1389
        outputs = {"Output": [pre_bias]}
1390 1391 1392
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1393

1394
        if bias is not None:
L
LielinJiang 已提交
1395
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1396
        else:
L
LielinJiang 已提交
1397 1398
            out = pre_bias

1399 1400 1401
    return out


1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1413
    r"""
S
swtkiwi 已提交
1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1426
    ..  math::
1427

1428
        Out = \sigma (W \ast X + b)
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1452
        ..  math::
1453 1454 1455 1456 1457 1458

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1459
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1460
            type of input is float16 or float32 or float64.
1461
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1462 1463
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1464
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1465 1466
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1467
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1468
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1469 1470 1471 1472
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1473
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1474
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1475
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1476 1477
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1478
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1479
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1480
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1481
            Default: dilation = 1.
1482
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1483 1484 1485 1486
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1487
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1488 1489 1490
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1491 1492
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1493 1494 1495
           None by default.

    Returns:
1496 1497 1498
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1499 1500 1501 1502 1503
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1504 1505
            import paddle
            import paddle.nn.functional as F
1506

1507 1508
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1509

1510 1511
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1512

1513
            print(y_np.shape)
1514 1515 1516 1517 1518 1519
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1520 1521
            "Attr(data_format): {}.".format(data_format)
        )
1522

1523
    channel_last = data_format == "NDHWC"
1524
    channel_dim = -1 if channel_last else 1
1525 1526
    if len(x.shape) != 5:
        raise ValueError(
1527 1528 1529 1530
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1531
    num_channels = x.shape[channel_dim]
1532 1533 1534
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1535
            "The channel dimension of the input({}) should be defined. "
1536 1537
            "Received: {}.".format(x.shape, num_channels)
        )
1538 1539
    if groups <= 0:
        raise ValueError(
1540 1541 1542 1543
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1544 1545 1546
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1547
            "Received: number of channels({}), groups({}).".format(
1548 1549 1550
                num_channels, groups
            )
        )
1551 1552 1553
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1554
            "Received: number of filters({}), groups({}).".format(
1555 1556 1557
                num_filters, groups
            )
        )
1558

1559
    cudnn_version = get_cudnn_version()
1560 1561 1562 1563 1564
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1565

1566
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1567 1568
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1569 1570
    op_type = "conv3d"

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1602
    r"""
L
LielinJiang 已提交
1603
    The convolution3d transpose layer calculates the output based on the input,
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1614
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1615 1616 1617

    For each input :math:`X`, the equation is:

1618
    ..  math::
1619

1620
        Out = \sigma (W \ast X + b)
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1645
        ..  math::
1646 1647 1648 1649 1650 1651 1652 1653 1654

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1655 1656
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1657 1658
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1659 1660 1661 1662
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1663
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1664 1665

    Args:
1666
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1667
            of input is float32 or float64.
L
LielinJiang 已提交
1668
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1669 1670
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1671
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1672 1673 1674
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1675
            Default: stride = 1.
1676
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1677 1678 1679
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1680
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1681
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1682
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1683
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1684 1685
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1686 1687
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1688
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1689 1690 1691 1692 1693
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1694 1695 1696
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1697
            Default: dilation = 1.
L
LielinJiang 已提交
1698
        output_size(int|list|tuple, optional): The output image size. If output size is a
1699
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1700
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1701
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1702 1703 1704
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1705 1706
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1707 1708 1709
           None by default.

    Returns:
1710
        A Tensor representing the conv3d_transpose, whose data
1711 1712 1713
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1714 1715 1716 1717
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1718

L
LielinJiang 已提交
1719
          import paddle
1720 1721
          import paddle.nn.functional as F

1722 1723
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1724

1725
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1726
          y_np = y_var.numpy()
1727

1728
          print(y_np.shape)
1729 1730 1731 1732 1733 1734
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1735 1736
            "Attr(data_format): {}.".format(data_format)
        )
1737

1738
    channel_last = data_format == "NDHWC"
1739
    channel_dim = -1 if channel_last else 1
1740 1741
    if len(x.shape) != 5:
        raise ValueError(
1742 1743 1744 1745
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1746
    num_channels = x.shape[channel_dim]
1747 1748 1749
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1750
            "The channel dimension of the input({}) should be defined. "
1751 1752
            "Received: {}.".format(x.shape, num_channels)
        )
1753 1754
    if groups <= 0:
        raise ValueError(
1755 1756 1757 1758
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1759 1760 1761
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1762
            "Received: number of channels({}), groups({}).".format(
1763 1764 1765
                num_channels, groups
            )
        )
1766 1767

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1768 1769
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1770 1771 1772
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1773
        if output_padding != 0:
1774 1775 1776 1777
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1778
        if isinstance(output_size, (list, tuple, int)):
1779
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1780 1781
        else:
            raise ValueError(
1782 1783
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1784 1785 1786 1787

    if output_padding == 0:
        output_padding = []
    else:
1788
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1789 1790 1791

    cudnn_version = get_cudnn_version()

1792 1793 1794 1795 1796 1797
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1798 1799 1800 1801

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1802
    if in_dygraph_mode():
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1815 1816 1817 1818 1819 1820
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1841
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1842
        if bias is not None:
L
LielinJiang 已提交
1843
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1844
        else:
L
LielinJiang 已提交
1845
            out = pre_bias
1846
    else:
L
LielinJiang 已提交
1847
        inputs = {'Input': [x], 'Filter': [weight]}
1848
        attrs = {
L
LielinJiang 已提交
1849
            'output_padding': output_padding,
1850 1851 1852 1853 1854 1855 1856
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1857
            "data_format": data_format_,
1858 1859
        }
        helper = LayerHelper(op_type, **locals())
1860 1861 1862
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1863

L
LielinJiang 已提交
1864
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1865 1866
        outputs = {"Output": [pre_bias]}

1867 1868 1869
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1870
        if bias is not None:
L
LielinJiang 已提交
1871
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1872
        else:
L
LielinJiang 已提交
1873
            out = pre_bias
1874 1875

    return out