conv.py 70.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

L
LielinJiang 已提交
15
from ...device import get_cudnn_version
16
from ...static import Variable
17 18 19 20 21 22
from ...fluid.layers.utils import (
    convert_to_list,
    _is_symmetric_padding,
    _contain_var,
    _convert_to_tensor_list,
)
23
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
24
from ...fluid.layer_helper import LayerHelper
25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
64 65 66 67
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
68 69 70 71 72 73 74 75 76 77 78 79 80 81
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
82 83
                    "is not supported.".format(padding)
                )
84
            padding_algorithm = "EXPLICIT"
85
            padding = _exclude_padding_in_batch_and_channel(
86 87
                padding, channel_last
            )
88
            if _is_symmetric_padding(padding, num_dims):
89 90 91 92
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
93 94
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
95 96 97 98
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
99
            padding = convert_to_list(padding, num_dims, 'padding')
100 101 102 103 104
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
105
        padding = convert_to_list(padding, num_dims, 'padding')
106 107
    if not all([p >= 0 for p in padding]):
        raise ValueError(
108 109 110 111
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
112 113 114
    return padding, padding_algorithm


115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
131

132
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
133
    if in_dygraph_mode() and op_type == "conv2d":
134 135 136 137 138 139 140
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
141
            groups,
142 143
            data_format,
        )
H
hong 已提交
144
        if bias is not None:
145 146 147
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
148 149 150 151
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
152
            if len(bias.shape) < len(x.shape):
153
                tmp_bias = _C_ops.reshape(
154 155 156 157 158
                    bias,
                    [1 for i in range(channel_dim)]
                    + bias.shape
                    + [1 for i in range(len(x.shape) - channel_dim - 1)],
                )
159
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
160
            else:
161
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
162 163
        else:
            return pre_bias
164 165

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
166 167 168 169 170 171 172 173 174 175 176
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
            use_cudnn,
        )
177
        if bias is not None:
178 179 180
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
181
            tmp_bias = _C_ops.reshape(
182 183 184 185 186
                bias,
                [1 for i in range(channel_dim)]
                + bias.shape
                + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
187
            return _C_ops.add(pre_bias, tmp_bias)
188 189 190 191
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
192 193 194 195 196 197 198 199 200 201
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
202
        if bias is not None:
203 204 205
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
206
            tmp_bias = _C_ops.reshape(
207
                bias,
208 209
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
210
            return _C_ops.add(pre_bias, tmp_bias)
211 212 213
        else:
            return pre_bias

Z
zhiboniu 已提交
214
    if in_dynamic_mode():
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
235
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
251
            "data_format": data_format,
L
LielinJiang 已提交
252
        }
253 254 255
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
256 257 258 259
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
260 261 262
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
263 264
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
265 266 267 268 269 270
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
271 272 273 274 275
        else:
            out = pre_bias
    return out


276 277 278 279 280 281 282 283 284 285 286
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
287
    r"""
W
whs 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
303
        Out = \sigma (W \ast X + b)
W
whs 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
330
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
331 332

    Args:
333
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
334 335
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
336
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
337
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
338
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
339
            contain one integers, (stride_size). Default: 1.
340
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
341 342 343 344 345 346
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
347
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
348 349 350 351 352 353
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
354
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
355 356 357
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
358 359
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
360 361 362
           None by default.

    Returns:
363
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
382

W
whs 已提交
383 384 385 386 387
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
388

W
whs 已提交
389 390 391 392 393 394 395 396 397 398
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
399 400 401 402
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
403

404
    channel_last = data_format == "NLC"
W
whs 已提交
405 406
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
407 408
    if len(x.shape) != 3:
        raise ValueError(
409 410 411 412
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
413 414 415
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
416 417 418 419
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
420 421
    if groups <= 0:
        raise ValueError(
422 423 424 425
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
426 427 428 429
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
430 431
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
432 433 434 435
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
436 437
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
438 439 440

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
441

W
whs 已提交
442
    if len(padding) == 2:
443
        padding = [0] * 2 + padding
W
whs 已提交
444
    elif len(padding) == 1:
445
        padding = [0] + padding
W
whs 已提交
446 447
    else:
        raise ValueError(
448 449 450 451
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
452 453 454
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
455 456

    l_type = "conv2d"
457 458

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
459 460 461 462 463 464
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
465 466 467
        l_type = 'depthwise_conv2d'
        use_cudnn = False

468
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
469
    if is_compiled_with_npu():
470
        if num_channels == groups and num_channels == num_filters:
471 472 473 474
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

475
    squeeze_aixs = -3 if channel_last else -2
476
    x = unsqueeze(x, axis=[squeeze_aixs])
477

478
    if in_dygraph_mode():
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
            out = getattr(_C_ops, l_type)(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
                use_cudnn,
            )
506 507 508
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
529
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
543
            "data_format": conv2d_data_format,
W
whs 已提交
544
        }
545 546 547
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
548
        helper = LayerHelper(l_type, **locals())
549
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
550 551
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
552 553 554
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
555 556
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
557
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
558 559 560
    return out


561 562 563 564 565 566 567 568 569 570 571
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
572
    r"""
S
swtkiwi 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

591
    ..  math::
592

593
        Out = \sigma (W \ast X + b)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

618
        ..  math::
619

620 621
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
622 623

    Args:
624
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
625
            of input is float16 or float32 or float64.
626
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
627
            the number of output channels, g is the number of groups, kH is the filter's
628
            height, kW is the filter's width.
629
        bias (Tensor, optional): The bias with shape [M,].
630 631
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
632
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
633 634 635 636
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
637 638
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
639
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
640
            when `data_format` is `"NHWC"`, `padding` can be in the form
641 642
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
643
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
644 645
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
646
            Default: dilation = 1.
C
cnn 已提交
647
        groups (int): The groups number of the Conv2D Layer. According to grouped
648 649 650 651
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
652
        data_format (str, optional): Specify the data format of the input, and the data format of the output
653 654 655
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
656 657
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
658 659 660
           None by default.

    Returns:
661
        A Tensor representing the conv2d result, whose data type is the same with input.
662 663 664 665

    Examples:
        .. code-block:: python

666
          import paddle
667 668
          import paddle.nn.functional as F

669 670
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
671 672 673 674

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

675 676 677 678 679
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
680 681 682 683
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
684

685
    channel_last = data_format == "NHWC"
686
    channel_dim = -1 if channel_last else 1
687 688
    if len(x.shape) != 4:
        raise ValueError(
689 690 691 692
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
693
    num_channels = x.shape[channel_dim]
694 695
    num_filters = weight.shape[0]
    if num_channels < 0:
696 697 698 699
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
700 701
    if groups <= 0:
        raise ValueError(
702 703 704 705
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
706 707 708 709
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
710 711
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
712 713 714 715
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
716 717
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
718

719 720
    cudnn_version = get_cudnn_version()

721 722 723 724 725
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
726

727 728
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
729 730
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
731 732

    l_type = "conv2d"
733 734 735 736 737
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
738
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
739
        if is_compiled_with_rocm():
740 741 742
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
743 744
    else:
        if in_dygraph_mode():
745 746 747 748 749 750 751
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
752
                groups,
753 754
                data_format,
            )
H
hong 已提交
755 756 757 758 759 760 761
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
762

763
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
764
    if is_compiled_with_npu():
765
        if num_channels == groups and num_channels == num_filters:
766 767 768 769
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

770 771 772 773 774 775
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
776
        use_cudnn = False
777

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
809
    r"""
810 811 812 813 814 815 816 817 818 819 820 821 822 823
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
824
        Out = \sigma (W \ast X + b)
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
860
          and :math:`L^\prime_{out} + stride`.
861 862 863 864 865 866 867 868 869

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
870
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
871 872 873 874 875 876 877
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
878
             If it is a list/tuple, it must contain one integer. Default: 0.
879 880 881 882 883 884 885
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
886
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
887 888
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
889
            tuple/list, it must contain one integer, `(feature_length)`. None if use
890
            filter_size(shape of weight), padding, and stride to calculate output_size.
891
        data_format (str, optional): Specify the data format of the input, and the data format of the output
892 893 894
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
895 896
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
913

914 915 916 917
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
918
          w=np.array([[[7, 0]],
919 920 921
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
922
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
923
          print(y_var)
924

925 926 927 928 929 930 931 932 933 934 935 936
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
937 938 939 940
                data_format
            )
        )
    channel_last = data_format == "NLC"
941
    channel_dim = -1 if channel_last else 1
942 943
    if len(x.shape) != 3:
        raise ValueError(
944 945 946 947
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
948 949 950

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
951 952 953 954
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
955 956
    if groups <= 0:
        raise ValueError(
957 958 959 960
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
961 962 963 964
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
965 966
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
967 968 969 970 971 972 973 974 975 976

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
977 978 979 980
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
981

982 983
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
984 985 986 987

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
988
        if output_padding != 0:
989 990 991 992
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
993
        if isinstance(output_size, (list, tuple, int)):
994
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
995 996
        else:
            raise ValueError(
997 998
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
999 1000 1001 1002

    if output_padding == 0:
        output_padding = []
    else:
1003 1004 1005
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
1006 1007 1008 1009

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1010
            "But got output_padding={} and stride={}".format(
1011 1012 1013
                output_padding[0], stride[0]
            )
        )
1014 1015 1016

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1017 1018 1019 1020 1021 1022
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1023 1024 1025 1026 1027 1028
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1029 1030
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1031

1032
    if in_dygraph_mode():
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1045 1046 1047
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1068
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1069 1070 1071 1072 1073
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1074
            'output_padding': output_padding,
1075 1076 1077 1078 1079 1080 1081
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1082
            'data_format': conv2d_data_format,
1083
        }
1084 1085 1086
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1087
        helper = LayerHelper(op_type, **locals())
1088
        dtype = helper.input_dtype(input_param_name='x')
1089 1090
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1091 1092 1093
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1094 1095 1096
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1097
    out = squeeze(out, axis=[squeeze_axis])
1098 1099 1100
    return out


1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1114
    r"""
S
swtkiwi 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1127
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1128 1129 1130

    For each input :math:`X`, the equation is:

1131
    ..  math::
1132

1133
        Out = \sigma (W \ast X + b)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1158
        ..  math::
1159 1160 1161 1162 1163 1164 1165

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1166 1167
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1168
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1169 1170 1171
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1172
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1173 1174

    Args:
L
LielinJiang 已提交
1175
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1176
            whose data type is float32 or float64.
L
LielinJiang 已提交
1177
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1178 1179
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1180
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1181 1182
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1183
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1184 1185
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1186
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1187
            it could be in three forms: `[pad_height, pad_width]` or
1188
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1189
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1190
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1191
            when `data_format` is `"NHWC"`, `padding` can be in the form
1192 1193
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1194 1195
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1196
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1197 1198 1199 1200 1201
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1202 1203
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1204
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1205
        output_size(int|tuple|list, optional): The output image size. If output size is a
1206
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1207
            filter_size(shape of weight), padding, and stride to calculate output_size.
1208
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1209 1210 1211
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1212 1213
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1214 1215 1216
           None by default.

    Returns:
1217
        A Tensor representing the conv2d_transpose, whose
1218 1219
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1220
        transposed convolution result.
1221 1222 1223 1224

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1225 1226
          import paddle
          import paddle.nn.functional as F
1227

1228 1229
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1230

1231
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1232
          y_np = y_var.numpy()
1233

1234
          print(y_np.shape)
1235 1236 1237 1238 1239 1240 1241
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1242 1243 1244 1245
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1246
    channel_dim = -1 if channel_last else 1
1247 1248
    if len(x.shape) != 4:
        raise ValueError(
1249 1250 1251 1252
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1253
    num_channels = x.shape[channel_dim]
1254
    if num_channels < 0:
1255 1256 1257 1258
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1259 1260
    if groups <= 0:
        raise ValueError(
1261 1262 1263 1264
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1265 1266 1267 1268
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1269 1270
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1271 1272 1273

    cudnn_version = get_cudnn_version()

1274 1275 1276 1277 1278
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1279 1280 1281

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1282 1283
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1284

1285 1286 1287
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1288
        if output_padding != 0:
1289 1290 1291 1292
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1293 1294 1295 1296 1297 1298
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1299
            output_size = convert_to_list(output_size, 2, 'output_size')
1300
        elif isinstance(output_size, Variable):
1301 1302 1303 1304 1305 1306 1307 1308 1309
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1310 1311 1312 1313
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1314 1315
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1316 1317
        else:
            raise ValueError(
1318 1319
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1320 1321 1322 1323

    if output_padding == 0:
        output_padding = []
    else:
1324
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1325 1326 1327

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1328
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1329
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1330
        use_cudnn = False
1331

F
From00 已提交
1332
    if in_dygraph_mode():
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1350 1351 1352 1353 1354 1355
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1376
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1377
        if bias is not None:
L
LielinJiang 已提交
1378
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1379
        else:
L
LielinJiang 已提交
1380
            out = pre_bias
1381
    else:
L
LielinJiang 已提交
1382
        inputs = {'Input': [x], 'Filter': [weight]}
1383
        attrs = {
L
LielinJiang 已提交
1384
            'output_padding': output_padding,
1385 1386 1387 1388 1389 1390 1391
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1392
            'data_format': data_format,
1393
        }
1394 1395 1396
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1397
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1398
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1399
        outputs = {"Output": [pre_bias]}
1400 1401 1402
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1403

1404
        if bias is not None:
L
LielinJiang 已提交
1405
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1406
        else:
L
LielinJiang 已提交
1407 1408
            out = pre_bias

1409 1410 1411
    return out


1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1423
    r"""
S
swtkiwi 已提交
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1436
    ..  math::
1437

1438
        Out = \sigma (W \ast X + b)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1462
        ..  math::
1463 1464 1465 1466 1467 1468

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1469
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1470
            type of input is float16 or float32 or float64.
1471
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1472 1473
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1474
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1475 1476
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1477
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1478
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1479 1480 1481 1482
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1483
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1484
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1485
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1486 1487
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1488
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1489
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1490
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1491
            Default: dilation = 1.
1492
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1493 1494 1495 1496
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1497
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1498 1499 1500
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1501 1502
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1503 1504 1505
           None by default.

    Returns:
1506 1507 1508
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1509 1510 1511 1512 1513
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1514 1515
            import paddle
            import paddle.nn.functional as F
1516

1517 1518
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1519

1520 1521
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1522

1523
            print(y_np.shape)
1524 1525 1526 1527 1528 1529
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1530 1531
            "Attr(data_format): {}.".format(data_format)
        )
1532

1533
    channel_last = data_format == "NDHWC"
1534
    channel_dim = -1 if channel_last else 1
1535 1536
    if len(x.shape) != 5:
        raise ValueError(
1537 1538 1539 1540
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1541
    num_channels = x.shape[channel_dim]
1542 1543 1544
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1545
            "The channel dimension of the input({}) should be defined. "
1546 1547
            "Received: {}.".format(x.shape, num_channels)
        )
1548 1549
    if groups <= 0:
        raise ValueError(
1550 1551 1552 1553
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1554 1555 1556
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1557
            "Received: number of channels({}), groups({}).".format(
1558 1559 1560
                num_channels, groups
            )
        )
1561 1562 1563
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1564
            "Received: number of filters({}), groups({}).".format(
1565 1566 1567
                num_filters, groups
            )
        )
1568

1569
    cudnn_version = get_cudnn_version()
1570 1571 1572 1573 1574
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1575

1576
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1577 1578
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1579 1580
    op_type = "conv3d"

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1612
    r"""
L
LielinJiang 已提交
1613
    The convolution3d transpose layer calculates the output based on the input,
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1624
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1625 1626 1627

    For each input :math:`X`, the equation is:

1628
    ..  math::
1629

1630
        Out = \sigma (W \ast X + b)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1655
        ..  math::
1656 1657 1658 1659 1660 1661 1662 1663 1664

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1665 1666
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1667 1668
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1669 1670 1671 1672
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1673
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1674 1675

    Args:
1676
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1677
            of input is float32 or float64.
L
LielinJiang 已提交
1678
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1679 1680
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1681
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1682 1683 1684
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1685
            Default: stride = 1.
1686
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1687 1688 1689
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1690
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1691
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1692
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1693
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1694 1695
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1696 1697
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1698
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1699 1700 1701 1702 1703
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1704 1705 1706
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1707
            Default: dilation = 1.
L
LielinJiang 已提交
1708
        output_size(int|list|tuple, optional): The output image size. If output size is a
1709
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1710
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1711
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1712 1713 1714
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1715 1716
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1717 1718 1719
           None by default.

    Returns:
1720
        A Tensor representing the conv3d_transpose, whose data
1721 1722 1723
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1724 1725 1726 1727
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1728

L
LielinJiang 已提交
1729
          import paddle
1730 1731
          import paddle.nn.functional as F

1732 1733
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1734

1735
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1736
          y_np = y_var.numpy()
1737

1738
          print(y_np.shape)
1739 1740 1741 1742 1743 1744
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1745 1746
            "Attr(data_format): {}.".format(data_format)
        )
1747

1748
    channel_last = data_format == "NDHWC"
1749
    channel_dim = -1 if channel_last else 1
1750 1751
    if len(x.shape) != 5:
        raise ValueError(
1752 1753 1754 1755
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1756
    num_channels = x.shape[channel_dim]
1757 1758 1759
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1760
            "The channel dimension of the input({}) should be defined. "
1761 1762
            "Received: {}.".format(x.shape, num_channels)
        )
1763 1764
    if groups <= 0:
        raise ValueError(
1765 1766 1767 1768
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1769 1770 1771
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1772
            "Received: number of channels({}), groups({}).".format(
1773 1774 1775
                num_channels, groups
            )
        )
1776 1777

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1778 1779
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1780 1781 1782
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1783
        if output_padding != 0:
1784 1785 1786 1787
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1788
        if isinstance(output_size, (list, tuple, int)):
1789
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1790 1791
        else:
            raise ValueError(
1792 1793
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1794 1795 1796 1797

    if output_padding == 0:
        output_padding = []
    else:
1798
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1799 1800 1801

    cudnn_version = get_cudnn_version()

1802 1803 1804 1805 1806 1807
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1808 1809 1810 1811

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1812
    if in_dygraph_mode():
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1825 1826 1827 1828 1829 1830
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1851
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1852
        if bias is not None:
L
LielinJiang 已提交
1853
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1854
        else:
L
LielinJiang 已提交
1855
            out = pre_bias
1856
    else:
L
LielinJiang 已提交
1857
        inputs = {'Input': [x], 'Filter': [weight]}
1858
        attrs = {
L
LielinJiang 已提交
1859
            'output_padding': output_padding,
1860 1861 1862 1863 1864 1865 1866
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1867
            "data_format": data_format_,
1868 1869
        }
        helper = LayerHelper(op_type, **locals())
1870 1871 1872
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1873

L
LielinJiang 已提交
1874
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1875 1876
        outputs = {"Output": [pre_bias]}

1877 1878 1879
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1880
        if bias is not None:
L
LielinJiang 已提交
1881
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1882
        else:
L
LielinJiang 已提交
1883
            out = pre_bias
1884 1885

    return out