conv.py 72.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
21
from ...fluid.data_feeder import check_variable_and_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
82 83
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
84
            if _is_symmetric_padding(padding, num_dims):
85 86 87 88
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
89 90
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95
            padding = convert_to_list(padding, num_dims, 'padding')
96 97 98 99 100
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
101
        padding = convert_to_list(padding, num_dims, 'padding')
102 103
    if not all([p >= 0 for p in padding]):
        raise ValueError(
104 105
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
106 107 108
    return padding, padding_algorithm


L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

124
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
125
    if in_dygraph_mode() and op_type == "conv2d":
126 127 128
        pre_bias = _C_ops.conv2d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
H
hong 已提交
129
        if bias is not None:
130 131
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
132 133
            if pre_bias.layout == "NHWC":
                channel_dim = 3  # last dim
134 135 136 137
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
138
            if len(bias.shape) < len(x.shape):
139
                tmp_bias = _C_ops.reshape(
C
Chen Weihang 已提交
140 141
                    bias, bias.shape +
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
142
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
143
            else:
144
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
145 146
        else:
            return pre_bias
147 148

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
149 150 151 152
        pre_bias = _C_ops.depthwise_conv2d(x, weight, stride, padding,
                                           padding_algorithm, groups, dilation,
                                           data_format, False, -1, False, False,
                                           use_cudnn)
153 154 155
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
156
            tmp_bias = _C_ops.reshape(
157 158
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
159
            return _C_ops.add(pre_bias, tmp_bias)
160 161 162 163
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
164 165 166
        pre_bias = _C_ops.conv3d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
167 168 169
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
170
            tmp_bias = _C_ops.reshape(
171 172
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
173
            return _C_ops.add(pre_bias, tmp_bias)
174 175 176
        else:
            return pre_bias

Z
zhiboniu 已提交
177
    if in_dynamic_mode():
L
LielinJiang 已提交
178 179 180 181 182
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
183
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
207 208 209 210
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
211 212
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
213 214 215 216 217 218 219 220 221 222
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
223 224 225 226 227
        else:
            out = pre_bias
    return out


W
whs 已提交
228 229 230 231 232 233 234 235 236
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
237
    r"""
W
whs 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
253
        Out = \sigma (W \ast X + b)
W
whs 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
280
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
281 282 283 284 285 286 287

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
288
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
289
            contain one integers, (stride_size). Default: 1.
290
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
291 292 293 294 295 296
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
297
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
317
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
318 319
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
320
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
344
          
W
whs 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
364
    channel_last = (data_format == "NLC")
W
whs 已提交
365 366
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
367 368 369 370
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
371 372 373
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
374
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
375 376
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
377 378
    if groups <= 0:
        raise ValueError(
379 380
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
394

W
whs 已提交
395
    if len(padding) == 2:
396
        padding = [0] * 2 + padding
W
whs 已提交
397
    elif len(padding) == 1:
398
        padding = [0] + padding
W
whs 已提交
399 400
    else:
        raise ValueError(
401 402
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
403 404 405
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
406 407

    l_type = "conv2d"
408 409

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
410 411
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
412 413 414
        l_type = 'depthwise_conv2d'
        use_cudnn = False

415
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
416
    if is_compiled_with_npu():
417 418 419 420 421
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

422
    squeeze_aixs = -3 if channel_last else -2
423
    x = unsqueeze(x, axis=[squeeze_aixs])
424

425 426 427 428 429 430 431 432
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      l_type)(x, weight, stride, padding, padding_algorithm,
                              groups, dilation, conv2d_data_format, False, -1,
                              False, False, use_cudnn)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
W
whs 已提交
433 434 435 436
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
437
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
456
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
457 458
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
459 460 461 462
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
463 464
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
465
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
466 467 468
    return out


469
def conv2d(x,
470 471 472
           weight,
           bias=None,
           stride=1,
473
           padding=0,
474 475 476 477
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
478
    r"""
S
swtkiwi 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

497
    ..  math::
498

499
        Out = \sigma (W \ast X + b)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

524
        ..  math::
525

526 527
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
528 529

    Args:
530
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
531
            of input is float16 or float32 or float64.
532
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
533 534
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
535
        bias (Tensor, optional): The bias with shape [M,].
536 537
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
538
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
539 540 541 542 543 544 545
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
546
            when `data_format` is `"NHWC"`, `padding` can be in the form
547 548
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
549 550
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
551 552
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
553
        groups (int): The groups number of the Conv2D Layer. According to grouped
554 555 556 557 558 559 560 561 562 563 564 565 566
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
567
        A Tensor representing the conv2d result, whose data type is the same with input. 
568 569 570

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
571
        ValueError: If the channel dimension of the input is less than or equal to zero.
572
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
573
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
574 575 576 577 578 579 580 581 582 583
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

584
          import paddle
585 586
          import paddle.nn.functional as F

587 588
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
589 590 591 592

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

593 594 595 596 597 598 599 600 601 602
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
603 604 605 606
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
607
    num_channels = x.shape[channel_dim]
608 609
    num_filters = weight.shape[0]
    if num_channels < 0:
610
        raise ValueError("The channel dimension of the input({}) "
611
                         "should be defined. Received: {}.".format(
612
                             x.shape, num_channels))
613 614
    if groups <= 0:
        raise ValueError(
615 616
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
617 618 619 620
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
621
            ", the groups is {}".format(num_channels, x.shape, groups))
622 623 624 625 626 627
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

628 629
    cudnn_version = get_cudnn_version()

630 631
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
632

633 634
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
635 636
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
637 638

    l_type = "conv2d"
639 640
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
641
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
642
        if is_compiled_with_rocm():
643 644 645
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
646 647
    else:
        if in_dygraph_mode():
648 649 650
            pre_bias = _C_ops.conv2d(x, weight, stride, padding,
                                     padding_algorithm, groups, dilation,
                                     data_format, False, -1, False)
H
hong 已提交
651 652 653 654 655 656 657
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
658

659
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
660
    if is_compiled_with_npu():
661 662 663 664 665
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

666 667
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
668
        use_cudnn = False
669

L
LielinJiang 已提交
670 671 672
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
673 674


675
def conv1d_transpose(x,
676 677 678 679 680 681 682 683 684 685
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
686
    r"""
687 688 689 690 691 692 693 694 695 696 697 698 699 700
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
701
        Out = \sigma (W \ast X + b)
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
737
          and :math:`L^\prime_{out} + stride`.
738 739 740 741 742 743 744 745 746

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
747
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
748 749 750 751 752 753 754
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
755
             If it is a list/tuple, it must contain one integer. Default: 0.
756 757 758 759 760 761 762
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
763
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
764 765
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
766
            tuple/list, it must contain one integer, `(feature_length)`. None if use
767
            filter_size(shape of weight), padding, and stride to calculate output_size.
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
785
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
808
          w=np.array([[[7, 0]],
809 810 811
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
812
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
813
          print(y_var)
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
830 831 832 833
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
834 835 836

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
837
        raise ValueError("The channel dimension of the input({}) "
838 839
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
840 841
    if groups <= 0:
        raise ValueError(
842 843
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
859
            "The size of padding's dimension should 1 or 2. But got padding={}".
860 861
            format(padding))

862 863
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
864 865 866 867

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
868 869 870 871
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
872
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
873 874 875 876 877 878 879
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
880 881
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
882 883 884 885

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
886 887
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
888 889 890

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
891 892
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
893 894 895 896 897 898
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

899 900
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
901

902 903 904 905 906 907 908 909
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      op_type)(x, weight, stride, padding, output_padding,
                               output_size, padding_algorithm, groups, dilation,
                               conv2d_data_format)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
L
LielinJiang 已提交
910 911 912 913
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
914
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
915 916 917 918 919
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
920
            'output_padding': output_padding,
921 922 923 924 925 926 927 928 929 930 931 932
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
933
        dtype = helper.input_dtype(input_param_name='x')
934 935
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
936 937 938 939
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
940 941 942
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

943
    out = squeeze(out, axis=[squeeze_axis])
944 945 946
    return out


947
def conv2d_transpose(x,
948 949 950
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
951 952 953
                     padding=0,
                     output_padding=0,
                     dilation=1,
954
                     groups=1,
L
LielinJiang 已提交
955
                     output_size=None,
956
                     data_format='NCHW',
957
                     name=None):
958
    r"""
S
swtkiwi 已提交
959

960 961 962 963 964 965 966 967 968 969 970
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
971
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
972 973 974

    For each input :math:`X`, the equation is:

975
    ..  math::
976

977
        Out = \sigma (W \ast X + b)
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1002
        ..  math::
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
1016
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1017 1018

    Args:
L
LielinJiang 已提交
1019
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1020
            whose data type is float32 or float64.
L
LielinJiang 已提交
1021
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1022 1023
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1024 1025
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1026
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
1027
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1028 1029 1030 1031 1032
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1033
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
1034
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1035
            when `data_format` is `"NHWC"`, `padding` can be in the form 
1036 1037
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1038 1039
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1040
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1041 1042 1043 1044 1045
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1046
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1047
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
1048
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1049
        output_size(int|tuple|list, optional): The output image size. If output size is a
1050
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1051
            filter_size(shape of weight), padding, and stride to calculate output_size.
1052 1053 1054 1055 1056 1057 1058 1059 1060
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1061
        A Tensor representing the conv2d_transpose, whose
1062
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
1063 1064
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
1065 1066 1067 1068

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1069
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1070
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1071
        ValueError: If `output_size` and kernel_size are None at the same time.
1072 1073 1074 1075 1076 1077 1078 1079 1080
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1081 1082
          import paddle
          import paddle.nn.functional as F
1083

1084 1085
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1086

1087
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1088
          y_np = y_var.numpy()
1089

1090
          print(y_np.shape)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1101 1102 1103 1104
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1105
    num_channels = x.shape[channel_dim]
1106
    if num_channels < 0:
1107
        raise ValueError("The channel dimension of the input({}) "
1108
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1109
                             x.shape, num_channels))
1110 1111
    if groups <= 0:
        raise ValueError(
1112 1113
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1114 1115 1116 1117
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1118 1119 1120 1121
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1122 1123
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1124 1125 1126

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1127 1128
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1129

1130 1131 1132
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1133 1134 1135 1136
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1137
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1138 1139 1140 1141 1142 1143 1144
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1145
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1146 1147 1148

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1149
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1150
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1151
        use_cudnn = False
1152

F
From00 已提交
1153
    if in_dygraph_mode():
1154 1155 1156
        op = _C_ops.conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.depthwise_conv2d_transpose
        pre_bias = op(x, weight, stride, padding, output_padding, output_size,
                      padding_algorithm, groups, dilation, data_format)
F
From00 已提交
1157 1158 1159 1160 1161 1162
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1163 1164 1165 1166
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
1167
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1168
        if bias is not None:
L
LielinJiang 已提交
1169
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1170
        else:
L
LielinJiang 已提交
1171
            out = pre_bias
1172
    else:
L
LielinJiang 已提交
1173
        inputs = {'Input': [x], 'Filter': [weight]}
1174
        attrs = {
L
LielinJiang 已提交
1175
            'output_padding': output_padding,
1176 1177 1178 1179 1180 1181 1182 1183 1184
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1185
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1186 1187
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1188
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1189
        outputs = {"Output": [pre_bias]}
1190 1191 1192 1193
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1194

1195
        if bias is not None:
L
LielinJiang 已提交
1196
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1197
        else:
L
LielinJiang 已提交
1198 1199
            out = pre_bias

1200 1201 1202
    return out


1203
def conv3d(x,
1204 1205 1206
           weight,
           bias=None,
           stride=1,
1207
           padding=0,
1208 1209 1210 1211
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1212
    r"""
S
swtkiwi 已提交
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1225
    ..  math::
1226

1227
        Out = \sigma (W \ast X + b)
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1251
        ..  math::
1252 1253 1254 1255 1256 1257

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1258
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1259
            type of input is float16 or float32 or float64.
1260
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1261 1262
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1263
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1264
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a 
1265
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1266
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1267
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
1268 1269 1270 1271
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1272
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1273
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1274
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1275 1276
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1277
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1278
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1279 1280
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1281
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1282 1283 1284 1285 1286
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
1287 1288 1289 1290
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str|None, optional): For detailed information, please refer 
1291 1292 1293 1294
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1295
        A Tensor representing the conv3d, whose data type is 
1296 1297
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1298 1299 1300 1301 1302
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1303 1304
            import paddle
            import paddle.nn.functional as F
1305

1306 1307
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1308

1309 1310
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1311

1312
            print(y_np.shape)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1323 1324 1325 1326
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1327
    num_channels = x.shape[channel_dim]
1328 1329 1330
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1331
            "The channel dimension of the input({}) should be defined. "
1332
            "Received: {}.".format(x.shape, num_channels))
1333 1334
    if groups <= 0:
        raise ValueError(
1335 1336
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1337 1338 1339
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1340 1341
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1342 1343 1344
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1345 1346
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1347

1348
    cudnn_version = get_cudnn_version()
1349 1350
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1351

1352
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1353 1354
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1355 1356
    op_type = "conv3d"

L
LielinJiang 已提交
1357 1358 1359
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1360 1361


1362
def conv3d_transpose(x,
1363 1364 1365
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1366 1367
                     padding=0,
                     output_padding=0,
1368
                     groups=1,
L
LielinJiang 已提交
1369 1370
                     dilation=1,
                     output_size=None,
1371
                     data_format='NCDHW',
1372
                     name=None):
1373
    r"""
L
LielinJiang 已提交
1374
    The convolution3d transpose layer calculates the output based on the input,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1385
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1386 1387 1388

    For each input :math:`X`, the equation is:

1389
    ..  math::
1390

1391
        Out = \sigma (W \ast X + b)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1416
        ..  math::
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1434
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1435 1436

    Args:
L
LielinJiang 已提交
1437
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1438
            of input is float32 or float64.
L
LielinJiang 已提交
1439
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1440 1441
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1442 1443
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1444
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1445 1446
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1447 1448 1449 1450
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1451
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1452
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1453
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1454
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1455 1456
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1457 1458
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1459
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1460 1461 1462 1463 1464
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1465
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1466
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1467 1468
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1469
        output_size(int|list|tuple, optional): The output image size. If output size is a
1470
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1471
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1472 1473 1474 1475
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1476 1477 1478 1479 1480
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1481
        A Tensor representing the conv3d_transpose, whose data
1482 1483 1484 1485 1486 1487 1488 1489
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1490
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1491
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1492
        ValueError: If `output_size` and kernel_size are None at the same time.
1493 1494 1495 1496 1497 1498 1499 1500
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1501 1502
          
          import paddle
1503 1504
          import paddle.nn.functional as F

1505 1506
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1507

1508
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1509
          y_np = y_var.numpy()
1510

1511
          print(y_np.shape)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1522 1523 1524 1525
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1526
    num_channels = x.shape[channel_dim]
1527 1528 1529
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1530
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1531
            "Received: {}.".format(x.shape, num_channels))
1532 1533
    if groups <= 0:
        raise ValueError(
1534 1535
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1536 1537 1538
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1539 1540
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1541 1542

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1543 1544
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1545 1546 1547
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1548 1549 1550 1551
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1552
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1553 1554 1555 1556 1557 1558 1559
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1560
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1561 1562 1563 1564

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1565 1566
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1567 1568 1569 1570

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1571
    if in_dygraph_mode():
1572 1573 1574 1575
        pre_bias = _C_ops.conv3d_transpose(x, weight, stride, padding,
                                           output_padding, output_size,
                                           padding_algorithm, groups, dilation,
                                           data_format_)
F
From00 已提交
1576 1577 1578 1579 1580 1581
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1582 1583 1584 1585
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
1586
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1587
        if bias is not None:
L
LielinJiang 已提交
1588
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1589
        else:
L
LielinJiang 已提交
1590
            out = pre_bias
1591
    else:
L
LielinJiang 已提交
1592
        inputs = {'Input': [x], 'Filter': [weight]}
1593
        attrs = {
L
LielinJiang 已提交
1594
            'output_padding': output_padding,
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1605 1606
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1607

L
LielinJiang 已提交
1608
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1609 1610
        outputs = {"Output": [pre_bias]}

1611 1612 1613 1614
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1615
        if bias is not None:
L
LielinJiang 已提交
1616
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1617
        else:
L
LielinJiang 已提交
1618
            out = pre_bias
1619 1620

    return out