conv.py 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
import os

17 18 19 20 21 22 23 24 25 26 27 28 29
from paddle import _C_ops, _legacy_C_ops, get_flags, in_dynamic_mode
from paddle.device import (
    get_all_custom_device_type,
    is_compiled_with_cuda,
    is_compiled_with_npu,
    is_compiled_with_rocm,
)
from paddle.fluid.framework import (
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)

L
LielinJiang 已提交
30
from ...device import get_cudnn_version
31 32 33
from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers import nn
34 35 36
from ...fluid.layers.utils import (
    _contain_var,
    _convert_to_tensor_list,
37 38
    _is_symmetric_padding,
    convert_to_list,
39
)
40
from ...framework import no_grad
41 42
from ...static import Variable
from ...tensor.manipulation import squeeze, unsqueeze
43

44 45
__all__ = []

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
69 70 71 72
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
73 74 75 76 77 78 79 80 81 82 83 84 85 86
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
87 88
                    "is not supported.".format(padding)
                )
89
            padding_algorithm = "EXPLICIT"
90
            padding = _exclude_padding_in_batch_and_channel(
91 92
                padding, channel_last
            )
93
            if _is_symmetric_padding(padding, num_dims):
94 95 96 97
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
98 99
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
100 101 102 103
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
104
            padding = convert_to_list(padding, num_dims, 'padding')
105 106 107 108 109
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
110
        padding = convert_to_list(padding, num_dims, 'padding')
111 112
    if not all([p >= 0 for p in padding]):
        raise ValueError(
113 114 115 116
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
117 118 119
    return padding, padding_algorithm


120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
136

137
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
138
    if in_dygraph_mode() and op_type == "conv2d":
139 140 141 142 143 144 145
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
146
            groups,
147 148
            data_format,
        )
H
hong 已提交
149
        if bias is not None:
W
wanghuancoder 已提交
150 151 152
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
153
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
154 155 156 157 158
            if (
                os.environ.get('FLAGS_npu_storage_format', None)
                in [1, '1', True, 'True', 'true']
                and 'npu' in get_all_custom_device_type()
            ):
159 160 161 162 163 164
                with no_grad():
                    bias_storage = _C_ops.npu_identity(
                        bias, 3
                    )  # ACL_FORMAT_NC1HWC0 = 3
                    bias_storage._share_underline_tensor_to(bias)
            return _C_ops.add(pre_bias, bias)
H
hong 已提交
165 166
        else:
            return pre_bias
167 168

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
169 170 171 172 173 174 175 176 177 178
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
179
        if bias is not None:
W
wanghuancoder 已提交
180 181 182 183
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
184 185 186 187
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
188 189 190 191 192 193 194 195 196 197
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
198
        if bias is not None:
W
wanghuancoder 已提交
199 200 201 202
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
203 204 205
        else:
            return pre_bias

Z
zhiboniu 已提交
206
    if in_dynamic_mode():
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
227
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
243
            "data_format": data_format,
L
LielinJiang 已提交
244
        }
245 246 247
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
248 249 250 251
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
252 253 254
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
255 256
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
257 258 259 260 261 262
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
263 264 265 266 267
        else:
            out = pre_bias
    return out


268 269 270 271 272 273 274 275 276 277 278
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
279
    r"""
W
whs 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
295
        Out = \sigma (W \ast X + b)
W
whs 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
322
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
323 324

    Args:
325
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
326 327
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
328
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
329
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
330
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
331
            contain one integers, (stride_size). Default: 1.
332
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
333 334 335 336 337 338
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
339
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
340 341 342 343 344 345
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
346
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
347 348 349
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
350 351
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
352 353 354
           None by default.

    Returns:
355
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
356 357 358 359 360 361 362
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
379 380 381 382 383 384 385 386
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
387 388 389 390
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
391

392
    channel_last = data_format == "NLC"
W
whs 已提交
393 394
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
395 396
    if len(x.shape) != 3:
        raise ValueError(
397 398 399 400
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
401 402 403
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
404 405 406 407
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
408 409
    if groups <= 0:
        raise ValueError(
410 411 412 413
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
414 415 416 417
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
418 419
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
420 421 422 423
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
424 425
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
426 427 428

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
429

W
whs 已提交
430
    if len(padding) == 2:
431
        padding = [0] * 2 + padding
W
whs 已提交
432
    elif len(padding) == 1:
433
        padding = [0] + padding
W
whs 已提交
434 435
    else:
        raise ValueError(
436 437 438 439
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
440 441 442
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
443 444

    l_type = "conv2d"
445 446

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
447 448 449 450 451 452
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
453 454 455
        l_type = 'depthwise_conv2d'
        use_cudnn = False

456
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
457
    if is_compiled_with_npu():
458
        if num_channels == groups and num_channels == num_filters:
459 460 461 462
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

463
    squeeze_aixs = -3 if channel_last else -2
464
    x = unsqueeze(x, axis=[squeeze_aixs])
465

466
    if in_dygraph_mode():
467 468 469 470 471 472 473 474 475 476 477 478
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
479
            out = _C_ops.depthwise_conv2d(
480 481 482 483 484 485 486 487 488 489 490 491 492
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
493 494 495
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
516
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
530
            "data_format": conv2d_data_format,
W
whs 已提交
531
        }
532 533 534
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
535
        helper = LayerHelper(l_type, **locals())
536
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
537 538
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
539 540 541
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
542 543
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
544
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
545 546 547
    return out


548 549 550 551 552 553 554 555 556 557 558
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
559
    r"""
S
swtkiwi 已提交
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

578
    ..  math::
579

580
        Out = \sigma (W \ast X + b)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

605
        ..  math::
606

607 608
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
609 610

    Args:
611
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
612
            of input is float16 or float32 or float64.
613
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
614
            the number of output channels, g is the number of groups, kH is the filter's
615
            height, kW is the filter's width.
616
        bias (Tensor, optional): The bias with shape [M,].
617 618
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
619
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
620 621 622 623
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
624 625
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
626
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
627
            when `data_format` is `"NHWC"`, `padding` can be in the form
628 629
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
630
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
631 632
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
633
            Default: dilation = 1.
C
cnn 已提交
634
        groups (int): The groups number of the Conv2D Layer. According to grouped
635 636 637 638
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
639
        data_format (str, optional): Specify the data format of the input, and the data format of the output
640 641 642
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
643 644
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
645 646 647
           None by default.

    Returns:
648
        A Tensor representing the conv2d result, whose data type is the same with input.
649 650 651 652

    Examples:
        .. code-block:: python

653
          import paddle
654 655
          import paddle.nn.functional as F

656 657
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
658 659 660 661

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

662 663 664 665 666
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
667 668 669 670
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
671

672
    channel_last = data_format == "NHWC"
673
    channel_dim = -1 if channel_last else 1
674 675
    if len(x.shape) != 4:
        raise ValueError(
676 677 678 679
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
680
    num_channels = x.shape[channel_dim]
681 682
    num_filters = weight.shape[0]
    if num_channels < 0:
683 684 685 686
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
687 688
    if groups <= 0:
        raise ValueError(
689 690 691 692
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
693 694 695 696
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
697 698
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
699 700 701 702
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
703 704
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
705

706 707
    cudnn_version = get_cudnn_version()

708 709 710 711 712
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
713

714 715
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
716 717
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
718 719

    l_type = "conv2d"
720 721 722 723 724
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
725
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
726
        if is_compiled_with_rocm():
727 728 729
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
730 731
    else:
        if in_dygraph_mode():
732 733 734 735 736 737 738
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
739
                groups,
740 741
                data_format,
            )
H
hong 已提交
742
            if bias is not None:
743 744 745 746 747 748 749 750 751 752 753 754 755
                channel_dim = (
                    channel_dim + len(x.shape)
                    if channel_dim < 0
                    else channel_dim
                )
                if len(bias.shape) < len(x.shape):
                    bias = _C_ops.reshape(
                        bias,
                        [1 for i in range(channel_dim)]
                        + bias.shape
                        + [1 for i in range(len(x.shape) - channel_dim - 1)],
                    )
                # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
756 757 758 759 760
                if (
                    os.environ.get('FLAGS_npu_storage_format', None)
                    in [1, '1', True, 'True', 'true']
                    and 'npu' in get_all_custom_device_type()
                ):
761 762 763 764 765 766
                    with no_grad():
                        bias_storage = _C_ops.npu_identity(
                            bias, 3
                        )  # ACL_FORMAT_NC1HWC0 = 3
                        bias_storage._share_underline_tensor_to(bias)
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
767 768 769 770
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
771

772
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
773
    if is_compiled_with_npu():
774
        if num_channels == groups and num_channels == num_filters:
775 776 777 778
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

779 780 781 782 783 784
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
785
        use_cudnn = False
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
818
    r"""
819 820 821 822 823 824 825 826 827 828 829 830 831 832
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
833
        Out = \sigma (W \ast X + b)
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
869
          and :math:`L^\prime_{out} + stride`.
870 871 872 873 874 875 876 877 878

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
879
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
880 881 882 883 884 885 886
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
887
             If it is a list/tuple, it must contain one integer. Default: 0.
888 889 890 891 892 893 894
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
895
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
896 897
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
898
            tuple/list, it must contain one integer, `(feature_length)`. None if use
899
            filter_size(shape of weight), padding, and stride to calculate output_size.
900
        data_format (str, optional): Specify the data format of the input, and the data format of the output
901 902 903
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
904 905
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
906 907 908 909 910 911 912 913 914 915 916 917 918
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
919

920
          # shape: (1, 2, 4)
921 922
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
923
          # shape: (2, 1, 2)
924 925 926 927 928 929 930
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
931 932 933 934 935 936 937 938 939 940 941
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
942 943 944 945
                data_format
            )
        )
    channel_last = data_format == "NLC"
946
    channel_dim = -1 if channel_last else 1
947 948
    if len(x.shape) != 3:
        raise ValueError(
949 950 951 952
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
953 954 955

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
956 957 958 959
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
960 961
    if groups <= 0:
        raise ValueError(
962 963 964 965
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
966 967 968 969
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
970 971
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
972 973 974 975 976 977 978 979 980 981

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
982 983 984 985
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
986

987 988
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
989 990 991 992

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
993
        if output_padding != 0:
994 995 996 997
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
998
        if isinstance(output_size, (list, tuple, int)):
999
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
1000 1001
        else:
            raise ValueError(
1002 1003
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1004 1005 1006 1007

    if output_padding == 0:
        output_padding = []
    else:
1008 1009 1010
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
1011 1012 1013 1014

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1015
            "But got output_padding={} and stride={}".format(
1016 1017 1018
                output_padding[0], stride[0]
            )
        )
1019 1020 1021

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1022 1023 1024 1025 1026 1027
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1028 1029 1030 1031 1032 1033
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1034 1035
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1036

1037
    if in_dygraph_mode():
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1050 1051 1052
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1073
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1074 1075 1076 1077 1078
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1079
            'output_padding': output_padding,
1080 1081 1082 1083 1084 1085 1086
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1087
            'data_format': conv2d_data_format,
1088
        }
1089 1090 1091
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1092
        helper = LayerHelper(op_type, **locals())
1093
        dtype = helper.input_dtype(input_param_name='x')
1094 1095
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1096 1097 1098
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1099 1100 1101
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1102
    out = squeeze(out, axis=[squeeze_axis])
1103 1104 1105
    return out


1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1119
    r"""
S
swtkiwi 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1132
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1133 1134 1135

    For each input :math:`X`, the equation is:

1136
    ..  math::
1137

1138
        Out = \sigma (W \ast X + b)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1163
        ..  math::
1164 1165 1166 1167 1168 1169 1170

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1171 1172
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1173
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1174 1175 1176
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1177
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1178 1179

    Args:
L
LielinJiang 已提交
1180
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1181
            whose data type is float32 or float64.
L
LielinJiang 已提交
1182
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1183 1184
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1185
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1186 1187
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1188
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1189 1190
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1191
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1192
            it could be in three forms: `[pad_height, pad_width]` or
1193
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1194
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1195
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1196
            when `data_format` is `"NHWC"`, `padding` can be in the form
1197 1198
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1199 1200
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1201
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1202 1203 1204 1205 1206
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1207 1208
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1209
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1210
        output_size(int|tuple|list, optional): The output image size. If output size is a
1211
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1212
            filter_size(shape of weight), padding, and stride to calculate output_size.
1213
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1214 1215 1216
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1217 1218
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1219 1220 1221
           None by default.

    Returns:
1222
        A Tensor representing the conv2d_transpose, whose
1223 1224
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1225
        transposed convolution result.
1226 1227 1228 1229

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1230 1231
          import paddle
          import paddle.nn.functional as F
1232

1233 1234
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1235

1236
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1237
          y_np = y_var.numpy()
1238

1239
          print(y_np.shape)
1240 1241 1242 1243 1244 1245 1246
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1247 1248 1249 1250
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1251
    channel_dim = -1 if channel_last else 1
1252 1253
    if len(x.shape) != 4:
        raise ValueError(
1254 1255 1256 1257
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1258
    num_channels = x.shape[channel_dim]
1259
    if num_channels < 0:
1260 1261 1262 1263
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1264 1265
    if groups <= 0:
        raise ValueError(
1266 1267 1268 1269
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1270 1271 1272 1273
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1274 1275
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1276 1277 1278

    cudnn_version = get_cudnn_version()

1279 1280 1281 1282 1283
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1284 1285 1286

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1287 1288
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1289

1290 1291 1292
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1293
        if output_padding != 0:
1294 1295 1296 1297
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1298 1299 1300 1301 1302 1303
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1304
            output_size = convert_to_list(output_size, 2, 'output_size')
1305
        elif isinstance(output_size, Variable):
1306 1307 1308 1309 1310 1311 1312 1313 1314
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1315 1316 1317 1318
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1319 1320
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1321 1322
        else:
            raise ValueError(
1323 1324
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1325 1326 1327 1328

    if output_padding == 0:
        output_padding = []
    else:
1329
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1330 1331 1332

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1333
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1334
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1335
        use_cudnn = False
1336

F
From00 已提交
1337
    if in_dygraph_mode():
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1355 1356 1357 1358 1359 1360
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1381
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1382
        if bias is not None:
L
LielinJiang 已提交
1383
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1384
        else:
L
LielinJiang 已提交
1385
            out = pre_bias
1386
    else:
L
LielinJiang 已提交
1387
        inputs = {'Input': [x], 'Filter': [weight]}
1388
        attrs = {
L
LielinJiang 已提交
1389
            'output_padding': output_padding,
1390 1391 1392 1393 1394 1395 1396
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1397
            'data_format': data_format,
1398
        }
1399 1400 1401
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1402
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1403
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1404
        outputs = {"Output": [pre_bias]}
1405 1406 1407
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1408

1409
        if bias is not None:
L
LielinJiang 已提交
1410
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1411
        else:
L
LielinJiang 已提交
1412 1413
            out = pre_bias

1414 1415 1416
    return out


1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1428
    r"""
S
swtkiwi 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1441
    ..  math::
1442

1443
        Out = \sigma (W \ast X + b)
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1467
        ..  math::
1468 1469 1470 1471 1472 1473

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1474
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1475
            type of input is float16 or float32 or float64.
1476
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1477 1478
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1479
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1480 1481
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1482
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1483
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1484 1485 1486 1487
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1488
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1489
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1490
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1491 1492
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1493
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1494
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1495
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1496
            Default: dilation = 1.
1497
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1498 1499 1500 1501
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1502
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1503 1504 1505
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1506 1507
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1508 1509 1510
           None by default.

    Returns:
1511 1512 1513
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1514 1515 1516 1517 1518
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1519 1520
            import paddle
            import paddle.nn.functional as F
1521

1522 1523
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1524

1525 1526
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1527

1528
            print(y_np.shape)
1529 1530 1531 1532 1533 1534
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1535 1536
            "Attr(data_format): {}.".format(data_format)
        )
1537

1538
    channel_last = data_format == "NDHWC"
1539
    channel_dim = -1 if channel_last else 1
1540 1541
    if len(x.shape) != 5:
        raise ValueError(
1542 1543 1544 1545
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1546
    num_channels = x.shape[channel_dim]
1547 1548 1549
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1550
            "The channel dimension of the input({}) should be defined. "
1551 1552
            "Received: {}.".format(x.shape, num_channels)
        )
1553 1554
    if groups <= 0:
        raise ValueError(
1555 1556 1557 1558
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1559 1560 1561
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1562
            "Received: number of channels({}), groups({}).".format(
1563 1564 1565
                num_channels, groups
            )
        )
1566 1567 1568
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1569
            "Received: number of filters({}), groups({}).".format(
1570 1571 1572
                num_filters, groups
            )
        )
1573

1574
    cudnn_version = get_cudnn_version()
1575 1576 1577 1578 1579
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1580

1581
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1582 1583
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1584 1585
    op_type = "conv3d"

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1617
    r"""
L
LielinJiang 已提交
1618
    The convolution3d transpose layer calculates the output based on the input,
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1629
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1630 1631 1632

    For each input :math:`X`, the equation is:

1633
    ..  math::
1634

1635
        Out = \sigma (W \ast X + b)
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1660
        ..  math::
1661 1662 1663 1664 1665 1666 1667 1668 1669

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1670 1671
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1672 1673
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1674 1675 1676 1677
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1678
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1679 1680

    Args:
1681
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1682
            of input is float32 or float64.
L
LielinJiang 已提交
1683
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1684 1685
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1686
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1687 1688 1689
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1690
            Default: stride = 1.
1691
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1692 1693 1694
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1695
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1696
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1697
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1698
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1699 1700
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1701 1702
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1703
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1704 1705 1706 1707 1708
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1709 1710 1711
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1712
            Default: dilation = 1.
L
LielinJiang 已提交
1713
        output_size(int|list|tuple, optional): The output image size. If output size is a
1714
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1715
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1716
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1717 1718 1719
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1720 1721
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1722 1723 1724
           None by default.

    Returns:
1725
        A Tensor representing the conv3d_transpose, whose data
1726 1727 1728
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1729 1730 1731 1732
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1733

L
LielinJiang 已提交
1734
          import paddle
1735 1736
          import paddle.nn.functional as F

1737 1738
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1739

1740
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1741
          y_np = y_var.numpy()
1742

1743
          print(y_np.shape)
1744 1745 1746 1747 1748 1749
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1750 1751
            "Attr(data_format): {}.".format(data_format)
        )
1752

1753
    channel_last = data_format == "NDHWC"
1754
    channel_dim = -1 if channel_last else 1
1755 1756
    if len(x.shape) != 5:
        raise ValueError(
1757 1758 1759 1760
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1761
    num_channels = x.shape[channel_dim]
1762 1763 1764
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1765
            "The channel dimension of the input({}) should be defined. "
1766 1767
            "Received: {}.".format(x.shape, num_channels)
        )
1768 1769
    if groups <= 0:
        raise ValueError(
1770 1771 1772 1773
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1774 1775 1776
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1777
            "Received: number of channels({}), groups({}).".format(
1778 1779 1780
                num_channels, groups
            )
        )
1781 1782

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1783 1784
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1785 1786 1787
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1788
        if output_padding != 0:
1789 1790 1791 1792
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1793
        if isinstance(output_size, (list, tuple, int)):
1794
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1795 1796
        else:
            raise ValueError(
1797 1798
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1799 1800 1801 1802

    if output_padding == 0:
        output_padding = []
    else:
1803
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1804 1805 1806

    cudnn_version = get_cudnn_version()

1807 1808 1809 1810 1811 1812
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1813 1814 1815 1816

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1817
    if in_dygraph_mode():
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1830 1831 1832 1833 1834 1835
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1856
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1857
        if bias is not None:
L
LielinJiang 已提交
1858
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1859
        else:
L
LielinJiang 已提交
1860
            out = pre_bias
1861
    else:
L
LielinJiang 已提交
1862
        inputs = {'Input': [x], 'Filter': [weight]}
1863
        attrs = {
L
LielinJiang 已提交
1864
            'output_padding': output_padding,
1865 1866 1867 1868 1869 1870 1871
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1872
            "data_format": data_format_,
1873 1874
        }
        helper = LayerHelper(op_type, **locals())
1875 1876 1877
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1878

L
LielinJiang 已提交
1879
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1880 1881
        outputs = {"Output": [pre_bias]}

1882 1883 1884
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1885
        if bias is not None:
L
LielinJiang 已提交
1886
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1887
        else:
L
LielinJiang 已提交
1888
            out = pre_bias
1889 1890

    return out