distribute_transpiler.py 50.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19

import distributed_splitter as splitter
Y
Yancey 已提交
20
from .. import core, framework
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
28 29


T
typhoonzero 已提交
30 31 32 33 34 35
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
36

T
typhoonzero 已提交
37 38
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
39 40


41
class UnionFind(object):
42
    """ Union-find data structure.
43

44
    Union-find is a data structure that keeps track of a set of elements partitioned
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


96
def split_dense_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
97
    """
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit). 

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
        blocks (list[(varname, block_id, current_block_size)]): A list 
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
114 115 116
    """
    blocks = []
    for var in var_list:
117
        split_count = service_count
T
typhoonzero 已提交
118 119 120 121
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
122
        if max_pserver_count < service_count:
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
132
        # update split_count after aligning
T
typhoonzero 已提交
133 134 135 136 137 138 139 140 141
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


142 143 144 145 146 147 148 149 150 151
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


T
done  
typhoonzero 已提交
152 153
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
154
                  trainer_id,
T
done  
typhoonzero 已提交
155 156 157
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
158 159
                  split_method=splitter.round_robin,
                  sync_mode=True):
T
done  
typhoonzero 已提交
160
        """
T
typhoonzero 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
198
        """
T
typhoonzero 已提交
199
        assert (callable(split_method))
T
done  
typhoonzero 已提交
200 201
        if program is None:
            program = default_main_program()
202 203
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
204
        self.sync_mode = sync_mode
T
typhoonzero 已提交
205 206 207 208
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
209
        pserver_endpoints = pservers.split(",")
210
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
211
        self.optimize_ops, params_grads = self._get_optimize_pass()
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
234

235 236
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
237 238 239 240 241 242 243 244
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
245 246 247 248 249 250 251

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
252
                if grad.name != grad_var_name(self.table_name)
253 254 255 256 257 258
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
259
            if self.sync_mode:
260
                self.trainer_side_table_grad_list = [
261 262 263 264 265 266 267 268 269
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
270
                self.trainer_side_table_grad_list = [
271 272 273 274 275 276 277
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
278

T
typhoonzero 已提交
279 280
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
281 282
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
283
        grad_var_mapping = self._append_split_op(program, grad_blocks)
284 285
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
286

287 288
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
289
        send_inputs = []
T
typhoonzero 已提交
290
        send_outputs = []
T
typhoonzero 已提交
291 292 293
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
294

T
typhoonzero 已提交
295 296 297
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
298

299 300
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
301
        eplist = split_method(send_inputs, pserver_endpoints)
302
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
303 304 305 306 307 308 309 310
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
311

T
typhoonzero 已提交
312
        rpc_client_var = program.global_block().create_var(
313
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
314
            persistable=True,
T
typhoonzero 已提交
315
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
316

317
        # create send_op
T
typhoonzero 已提交
318
        program.global_block().append_op(
T
typhoonzero 已提交
319 320
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
321 322
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
323 324 325 326 327
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
328
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
329
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
330 331
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
332
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
333
            program.global_block().append_op(
T
typhoonzero 已提交
334
                type="concat",
T
typhoonzero 已提交
335
                inputs={"X": splited_var},
T
typhoonzero 已提交
336
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
337
                attrs={"axis": 0})
T
typhoonzero 已提交
338

339 340
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
341
                                                        pserver_endpoints)
342 343 344
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
345 346
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
347
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
348
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
349 350
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
351 352 353 354

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
355
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
356 357 358 359 360 361
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
362
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
363 364 365 366 367 368 369 370
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
371 372 373 374 375 376

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
377 378 379 380 381 382 383 384 385
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
386
            if self.sync_mode and self.trainer_num > 1:
387
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
388 389 390 391 392 393 394 395 396
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
397

Q
qiaolongfei 已提交
398
        # step 3
399
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
400 401 402
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
403
        # step 3.2
T
typhoonzero 已提交
404 405 406 407 408 409
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
410
        # step 3.3
T
typhoonzero 已提交
411
        # Iterate through the ops, and if an op and the optimize ops
412
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
413
        # append it into the sub program.
T
typhoonzero 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
430 431
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
432

Q
qiaolongfei 已提交
433
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
434
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
435
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
Y
Yancey 已提交
436
                                         self.origin_program)
T
typhoonzero 已提交
437 438 439
            else:
                self._append_pserver_non_opt_ops(block, op)

440
        # append lr decay ops to the child block if exists
441 442
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
443 444
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
445
            for _, op in enumerate(lr_ops):
446
                self._append_pserver_non_opt_ops(lr_decay_block, op)
447

T
typhoonzero 已提交
448
        # append op to the current block
Q
qiaolongfei 已提交
449
        grad_to_block_id = []
Q
qiaolongfei 已提交
450
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
451
        for idx, opt_op in enumerate(opt_op_on_pserver):
452
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
453 454
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
455
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
456
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
457 458

        # append global ops
459
        if global_ops:
Q
qiaolongfei 已提交
460 461 462
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
463 464
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
465 466 467 468 469 470 471 472 473

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

474 475 476 477
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
478
            table_opt_block = self._create_table_optimize_block(
479
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
480
            prefetch_block = self._create_prefetch_block(
481
                pserver_index, pserver_program, table_opt_block)
482 483 484 485 486 487 488 489 490

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
491 492 493 494 495 496
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
497
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
498
                "endpoint": endpoint,
499
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
500 501
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
502
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
503
            })
504

T
typhoonzero 已提交
505 506 507 508 509 510 511 512 513 514
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
515
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
529
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

562 563
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
564
                                               pserver_endpoints):
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
615
                        attrs={"epmap": pserver_endpoints})
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
631
                    delete_ops(program.global_block(), [op])
632 633 634 635 636 637 638 639
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
640
        table_grad_name = grad_var_name(self.table_name)
641 642 643 644 645 646 647 648 649 650
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
651
                    outputs={"Out": self.trainer_side_table_grad_list})
652 653 654
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
655
                    inputs={'X': self.trainer_side_table_grad_list},
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
679
            type="lookup_sparse_table",
680 681 682 683 684 685 686 687 688 689 690
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
691
                                     pre_block_idx, grad_to_block_id):
692 693
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
694 695 696 697 698 699 700 701
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
702 703 704
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
705
            self.origin_program.global_block().vars[grad_var_name(
706
                self.table_name)])
707 708 709 710 711 712

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
713
        table_opt_block = pserver_program.create_block(pre_block_idx)
714 715 716
        # only support sgd now
        assert table_opt_op.type == "sgd"

717 718 719
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
720
            pserver_side_table_grad_list = [
721 722 723 724 725 726 727 728 729
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

730
            # append sum op for pserver_side_table_grad_list
731 732
            table_opt_block.append_op(
                type="sum",
733
                inputs={"X": pserver_side_table_grad_list},
734
                outputs={"Out": [grad_var]})
735 736
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
737
            origin_grad_name = grad_var.name
738 739
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
740 741
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
742
                                 " grad_var:" + grad_var.name)
743 744
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

760 761 762
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

763 764
        return table_opt_block

T
typhoonzero 已提交
765 766 767 768 769 770
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
771
        Create vars for each split.
T
typhoonzero 已提交
772 773
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
774 775 776 777 778 779 780
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns: 
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping 
                from original var name to each var split.
T
typhoonzero 已提交
781
        """
782 783

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
784
        block_map = dict()
785

T
typhoonzero 已提交
786
        var_mapping = dict()
T
typhoonzero 已提交
787 788 789 790 791 792
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
793
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
794
            if len(splited) == 1:
795
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
796 797 798 799 800 801 802 803
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
804
                continue
T
typhoonzero 已提交
805 806

            var_mapping[varname] = []
T
typhoonzero 已提交
807 808 809 810
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
811

T
typhoonzero 已提交
812
            for i, block in enumerate(splited):
T
typhoonzero 已提交
813
                size = block[1]
T
typhoonzero 已提交
814 815 816 817
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
818
                new_var_name = ""
819
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
820 821 822 823 824
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
825
                var = program.global_block().create_var(
T
typhoonzero 已提交
826 827
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
828
                    dtype=orig_var.dtype,
829
                    type=orig_var.type,
T
typhoonzero 已提交
830
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
831
                var_mapping[varname].append(var)
T
typhoonzero 已提交
832
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
833
        return var_mapping
T
done  
typhoonzero 已提交
834

835 836 837 838 839 840 841 842 843 844 845
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
846 847 848 849 850 851 852
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
853
            persistable=persistable)
T
done  
typhoonzero 已提交
854

T
typhoonzero 已提交
855
    def _append_split_op(self, program, gradblocks):
856 857 858 859 860 861 862 863 864 865
        """
        Split variables that need to be split and append respective ops
        Args:
            program (ProgramDesc): ProgramDesc that gradients blong.
            gradblocks (list[(varname, block_id, block_size)]): List of gradient blocks.
        Returns:
            var_mapping (dict(varname->[new_splitted_variable])):A dict mapping 
                from original var name to each var split.
        """

T
typhoonzero 已提交
866
        add_suffix = False
867
        if self.trainer_num > 1:
T
typhoonzero 已提交
868
            add_suffix = True
T
typhoonzero 已提交
869
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
870
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
871
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
872 873
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
874
                continue
T
typhoonzero 已提交
875
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
876
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
877 878 879 880 881 882 883 884
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
885
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
886 887 888 889
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
890
                    type="split_byref",
891 892 893 894 895 896 897
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
898
        return var_mapping
T
done  
typhoonzero 已提交
899

T
typhoonzero 已提交
900 901 902 903
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
904
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
927 928 929 930 931
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
932 933
        else:
            orig_var_name = varname
T
typhoonzero 已提交
934 935
        return orig_var_name

936
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
937
                            grad_to_block_id, origin_program):
938
        program = optimize_block.program
T
typhoonzero 已提交
939
        pserver_block = program.global_block()
T
typhoonzero 已提交
940
        new_inputs = dict()
T
typhoonzero 已提交
941 942
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
943
        for key in opt_op.input_names:
T
typhoonzero 已提交
944 945 946
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
947
                    if same_or_split_var(
T
typhoonzero 已提交
948 949
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
950 951 952 953 954 955
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
956 957
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
958 959
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
960
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
961
                    vars2merge = []
962
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
963 964 965 966
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

967
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
968 969 970
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
971
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
972 973 974 975 976
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
977
                            attrs={"scale": 1.0 / float(self.trainer_num)})
978

T
typhoonzero 已提交
979 980 981 982 983
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
984
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
985 986 987 988
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
989
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
990
                    name=param_block.name,
T
typhoonzero 已提交
991
                    persistable=True,
T
typhoonzero 已提交
992 993 994
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
995
            elif key == "LearningRate":
996
                # learning rate variable has already be created by non-optimize op,
997
                # don't create it once again.
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1009

T
typhoonzero 已提交
1010
        for key in opt_op.input_names:
1011 1012
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1013
                continue
1014
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1015 1016 1017 1018
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1019
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1020 1021 1022 1023 1024
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1025

1026
        # change output's ParamOut variable
1027 1028
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1029
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1030

1031
        optimize_block.append_op(
T
typhoonzero 已提交
1032 1033
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1034
            outputs=outputs,
T
typhoonzero 已提交
1035 1036
            attrs=opt_op.attrs)

1037 1038
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1039
        # Append the ops for parameters that do not need to be optimized/updated
1040 1041
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1042 1043 1044 1045
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1046
            for var in varlist:
1047 1048
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1049 1050 1051 1052 1053
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1054 1055
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1056

1057 1058 1059 1060 1061
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1062
                program.global_block().clone_variable(var)
1063

1064
        optimize_block.append_op(
T
typhoonzero 已提交
1065
            type=opt_op.type,
T
typhoonzero 已提交
1066 1067
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1068 1069
            attrs=opt_op.attrs)

1070 1071 1072 1073
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1087 1088
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1089
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1090
        op2_output_names = op2.desc.output_arg_names()
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1110
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1111 1112
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1113 1114 1115 1116 1117 1118 1119
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1120
        if op.input("Param")[0] in param_names:
1121 1122 1123
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1124
                param = op.input("Param")[0]
T
typhoonzero 已提交
1125
                if same_or_split_var(n, param) and n != param:
1126 1127 1128
                    return True
            return False

T
typhoonzero 已提交
1129
    def _get_input_map_from_op(self, varmap, op):
1130
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1143
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1165
        block = self.origin_program.global_block()
1166 1167 1168 1169 1170
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1184 1185
                    # we only need to append op for once
                    break
1186
        return lr_ops
Y
Yancey1989 已提交
1187 1188

    def _get_optimize_pass(self):
1189 1190 1191 1192 1193 1194
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1205 1206
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1207 1208 1209
            else:
                pass
        return opt_ops, params_grads
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False