distribute_transpiler.py 72.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
53 54 55 56 57 58 59 60 61
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
62 63


T
typhoonzero 已提交
64 65 66 67 68 69
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
70

T
typhoonzero 已提交
71 72
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
73 74


75 76 77 78
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
79
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
80
    """
81 82 83 84 85 86
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
87
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
88 89 90

    Args:
        var_list (list): List of variables.
91 92
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
93 94
        min_block_size (int): Minimum splitted block size.
    Returns:
95
        blocks (list[(varname, block_id, current_block_size)]): A list
96
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
97 98 99
    """
    blocks = []
    for var in var_list:
100
        split_count = slice_count
T
typhoonzero 已提交
101 102 103 104
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
105
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
106 107 108 109 110 111 112 113 114
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
115
        # update split_count after aligning
T
typhoonzero 已提交
116
        split_count = int(math.ceil(var_numel / float(block_size)))
117
        for block_id in range(split_count):
T
typhoonzero 已提交
118 119 120 121 122 123 124
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
125 126 127 128 129 130 131
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
132
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
133 134 135 136 137 138
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
139
    print_log = False
G
gongweibao 已提交
140 141


Y
gen rst  
yi.wu 已提交
142
class DistributeTranspiler(object):
Y
yi.wu 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
177

G
gongweibao 已提交
178 179 180 181 182 183 184 185 186
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

187 188 189
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
190 191 192
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

193 194 195 196 197
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
198 199
                  sync_mode=True,
                  startup_program=None):
200
        """
Y
yi.wu 已提交
201 202 203 204 205 206 207 208 209 210 211
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
212 213
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
214 215 216
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
217 218
        if startup_program is None:
            startup_program = default_startup_program()
219
        self.origin_program = program
W
Wu Yi 已提交
220 221
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
222

223 224 225 226 227 228 229
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
230
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
231
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
232
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
233
        self.grad_name_to_param_name = dict()
234 235
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
236
            self.grad_name_to_param_name[grad_var.name] = param_var.name
237

T
tangwei12 已提交
238 239 240 241 242 243
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

244
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
245
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
246
        self._init_splited_vars()
247

G
gongweibao 已提交
248
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
249
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
250
        send_vars = []
251 252 253 254 255 256

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
257
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
258

G
gongweibao 已提交
259
        if not self.config.slice_var_up:
260 261
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
262

263
        self.grad_name_to_send_dummy_out = dict()
264
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
265
            eplist = ps_dispatcher.dispatch(splited_vars)
266

G
gongweibao 已提交
267
            if not self.config.slice_var_up:
268 269
                assert (len(splited_vars) == 1)

270
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
271
            if len(splited_vars) == 1:
272
                splited_grad_varname = splited_vars[0].name
273 274
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
275
            elif len(splited_vars) > 1:
276
                orig_var = program.global_block().vars[splited_grad_varname]
277 278
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
279
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
280
                index += 1
Y
Yancey1989 已提交
281 282
            else:
                AssertionError("Can not insert the send op by original "
283
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
284

W
Wu Yi 已提交
285 286
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
287
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
288

W
Wu Yi 已提交
289 290 291 292
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
293
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
294
                index=index + 1,
295
                type="send",
Y
update  
Yancey1989 已提交
296
                inputs={"X": splited_vars},
297
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
298 299
                attrs={
                    "epmap": eplist,
300
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
301 302 303 304
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
305
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
306
                })
Y
update  
Yancey1989 已提交
307 308
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
309 310

        if self.sync_mode:
W
Wu Yi 已提交
311 312
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
313 314 315 316
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
317
            input_deps = list(self.grad_name_to_send_dummy_out.values())
318

Y
Yancey1989 已提交
319 320
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
321
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
322
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
323 324
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
325
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
326
                })
Y
Yancey1989 已提交
327

G
gongweibao 已提交
328
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
329
        recv_vars = []
Y
update  
Yancey1989 已提交
330
        for _, var in enumerate(send_vars):
331
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
332
        ps_dispatcher.reset()
Y
Yancey1989 已提交
333 334
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
335
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
336 337
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
338

Y
Yancey1989 已提交
339
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
340
        all_recv_outputs = []
341
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
342 343 344 345
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
346 347 348 349
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
350
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
351 352
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
353 354 355 356 357 358 359 360 361
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
362 363
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
364
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
365 366 367
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
368
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
369 370
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
371
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
372
                })
T
typhoonzero 已提交
373

Q
qiaolongfei 已提交
374
        if self.sync_mode:
W
Wu Yi 已提交
375
            # form a WAW dependency
Q
qiaolongfei 已提交
376 377 378
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
379
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
380 381 382 383
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
384

385
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
386 387
            if len(splited_var) <= 1:
                continue
388
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
389
            program.global_block().append_op(
T
typhoonzero 已提交
390
                type="concat",
T
typhoonzero 已提交
391
                inputs={"X": splited_var},
T
typhoonzero 已提交
392
                outputs={"Out": [orig_param]},
393 394 395 396
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
397

G
gongweibao 已提交
398 399
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

400
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
401 402
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
403
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
404

W
Wu Yi 已提交
405
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
406 407 408 409 410 411
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
412
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
413
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
414
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
415
        self.origin_program.__str__()
G
gongweibao 已提交
416

W
Wu Yi 已提交
417 418 419
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

420
        return self.origin_program
T
typhoonzero 已提交
421

W
Wu Yi 已提交
422
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
423 424 425 426
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
427
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
428
            eplist (list): A list of strings indicating
G
gongweibao 已提交
429 430 431 432

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
433
        startup_program = self.startup_program
G
gongweibao 已提交
434 435 436 437

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
438
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
459
                inputs={"X": []},
G
gongweibao 已提交
460 461 462 463 464 465
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
466 467
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
468 469 470
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
471
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
472 473 474 475 476
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
477
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
478 479 480
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
481
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
482
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
483 484 485 486 487 488 489 490 491 492
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
493 494 495 496 497 498 499 500
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
501 502
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
503
        Get parameter server side program.
504

Y
yi.wu 已提交
505 506
        Args:
            endpoint (str): current parameter server endpoint.
507

Y
yi.wu 已提交
508 509
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
510
        """
Y
yi.wu 已提交
511 512 513 514
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
515 516 517
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
518 519
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
520
        pserver_program.random_seed = self.origin_program.random_seed
521
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
522 523 524 525 526 527 528 529
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
530 531 532 533 534
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
535 536 537 538 539 540 541 542 543
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
544
            if self.sync_mode and self.trainer_num > 1:
545
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
546 547 548 549 550 551 552 553 554
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
555

Q
qiaolongfei 已提交
556
        # step 3
557
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
558 559 560
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
561
        # step 3.2
T
typhoonzero 已提交
562 563 564 565
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
566 567
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
568
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
569
        # step 3.3
T
typhoonzero 已提交
570
        # Iterate through the ops, and if an op and the optimize ops
571
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
572
        # append it into the sub program.
T
typhoonzero 已提交
573 574 575

        global_ops = []

Y
wip  
yi.wu 已提交
576 577
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
578
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
579
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
580
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
581
            elif op not in lr_ops:
Q
Qiyang Min 已提交
582
                self._append_pserver_non_opt_ops(block, op)
583 584 585 586 587 588

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
589

Y
Yancey1989 已提交
590
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
591 592 593 594 595 596 597 598
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
599
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
600 601 602

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
603
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
604 605

            # clone ops
Y
Yancey1989 已提交
606 607
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
608
                # clone sub_block of op
Y
Yancey1989 已提交
609
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
610 611 612 613

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

614
        # append lr decay ops to the child block if exists
615
        lr_ops = self._get_lr_ops()
616 617
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
618
        if len(lr_ops) > 0:
W
Wu Yi 已提交
619
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
620
                pserver_program.num_blocks - 1)
621
            optimize_blocks.append(lr_decay_block)
622
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
623
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
624
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
625 626
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
627

T
typhoonzero 已提交
628
        # append op to the current block
Q
qiaolongfei 已提交
629
        grad_to_block_id = []
Q
qiaolongfei 已提交
630
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
631
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
632
            per_opt_block = pserver_program._create_block(pre_block_idx)
633
            optimize_blocks.append(per_opt_block)
634
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
635
            # append grad merging ops before clip and weight decay
636 637
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
638
            for _, op in enumerate(self.optimize_ops):
639 640 641 642 643
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
644 645 646
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
647 648 649 650 651 652 653 654 655 656 657 658
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
                        op not in global_ops:
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
659

W
Wu Yi 已提交
660 661
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
662
        # append global ops
663
        if global_ops:
W
Wu Yi 已提交
664
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
665
                pserver_program.num_blocks - 1)
666
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
667
            for glb_op in global_ops:
X
Xi Chen 已提交
668
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
669
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
670

671
        # process distributed lookup_table
Q
qiaolongfei 已提交
672
        prefetch_var_name_to_block_id = []
673 674
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
675
            table_opt_block = self._create_table_optimize_block(
676
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
677
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
678
            prefetch_var_name_to_block_id = self._create_prefetch_block(
679
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
680 681
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
682

T
tangwei12 已提交
683 684
            pserver_program._distributed_lookup_table = self.table_name

685 686 687
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
688
            assert len(prefetch_var_name_to_block_id) > 0
689
        else:
Q
qiaolongfei 已提交
690
            assert len(prefetch_var_name_to_block_id) == 0
691

692
        attrs = {
693
            "optimize_blocks": optimize_blocks,
694 695 696
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
697
            "grad_to_block_id": grad_to_block_id,
698 699 700 701
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
702
            attrs['checkpint_block_id'] = checkpoint_block_id
703

T
typhoonzero 已提交
704 705 706 707 708
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
709
            attrs=attrs)
710

T
tangwei12 已提交
711
        # add distributed attrs
T
tangwei12 已提交
712
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
713
            endpoint)
714

W
Wu Yi 已提交
715
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
716 717
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
718 719
        return pserver_program

W
Wu Yi 已提交
720 721 722 723 724 725
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
726

W
Wu Yi 已提交
727 728 729 730 731 732 733
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

734 735
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
736
                            pserver_program=None,
737
                            startup_program=None):
T
typhoonzero 已提交
738
        """
W
Wu Yi 已提交
739 740
        **Deprecated**

T
typhoonzero 已提交
741 742 743
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
744 745 746

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
747 748
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
749
                when initalizing
750

Y
yi.wu 已提交
751 752
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
753
        """
754 755 756
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
757
        if pserver_program != None:
758 759 760
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
761
        if startup_program != None:
762 763 764
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
765

T
typhoonzero 已提交
766
        s_prog = Program()
W
Wu Yi 已提交
767
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
768
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
769 770 771 772 773 774 775 776 777 778 779
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
780
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
781
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
782
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
783 784 785 786
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
787
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
788 789
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
790 791 792 793 794 795 796 797 798 799
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
800 801

            if op_on_pserver:
802 803 804
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
805 806 807
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
808
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
809 810 811 812
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
813
                    attrs=op.all_attrs())
814 815

        # add slice vars
T
tangwei12 已提交
816
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
817

T
typhoonzero 已提交
818 819
        return s_prog

T
tangwei12 已提交
820 821 822
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
823
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
824
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
825
            if not block_name:
826 827
                continue

T
tangwei12 已提交
828
            block_idx = int(block_name.split(block_suffix)[1])
829 830 831 832 833 834
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
835
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
836

T
tangwei12 已提交
837
        return slice_vars_and_attrs
838

839 840
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
841 842 843 844 845 846 847 848 849
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
850
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
902
    def _init_splited_vars(self):
Y
yi.wu 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
926
        if self.config.slice_var_up:
Y
yi.wu 已提交
927 928
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
929 930 931
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
932
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
933 934
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
935 936 937
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
938 939 940 941
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
942 943
        assert (len(grad_blocks) == len(param_blocks))

944
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
945 946
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
947
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
948 949 950 951
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
952
        # dict(grad_splited_var -> param_splited_var)
953
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
954 955 956 957
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
958
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
959 960

        # create mapping of endpoint -> split var to create pserver side program
961
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
962 963 964 965 966 967 968 969 970
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

971
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
972 973
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
974
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
975 976 977 978 979 980 981 982 983
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
984 985 986 987 988 989 990 991 992

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

993
                    lookup_table_op_index = list(all_ops).index(op)
994 995 996
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
997
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
998
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
999 1000 1001 1002 1003 1004
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
1005
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1006 1007 1008 1009
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
1010 1011

                    # insert split_ids_op
W
Wu Yi 已提交
1012
                    program.global_block()._insert_op(
1013
                        index=lookup_table_op_index,
1014 1015 1016 1017 1018 1019 1020
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
1021
                        outputs={"Out": prefetch_input_vars})
1022 1023

                    # insert prefetch_op
W
Wu Yi 已提交
1024
                    program.global_block()._insert_op(
1025
                        index=lookup_table_op_index + 1,
1026
                        type="prefetch",
Q
qiaolongfei 已提交
1027 1028
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
1029
                        attrs={
1030
                            "epmap": pserver_endpoints,
1031 1032 1033
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1034
                        })
1035 1036

                    # insert concat_op
W
Wu Yi 已提交
1037
                    program.global_block()._insert_op(
1038 1039 1040 1041 1042 1043 1044
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1045
                            'X': prefetch_output_vars
1046
                        },
1047 1048 1049 1050 1051
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1052
                        })
1053 1054

                    # delete lookup_table_op
1055
                    delete_ops(program.global_block(), [op])
1056 1057 1058
                    # break for loop
                    break

Y
Yancey1989 已提交
1059
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1060
        # 2. add split_ids_op and send_op to send gradient to pservers
1061 1062
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1063
        table_grad_name = grad_var_name(self.table_name)
1064 1065 1066 1067
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1068
                program.global_block()._insert_op(
1069 1070 1071 1072 1073
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1074
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1075
                program.global_block()._insert_op(
1076
                    index=op_index + 2,
1077
                    type="send",
1078
                    inputs={'X': self.trainer_side_table_grad_list},
1079 1080 1081 1082 1083
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1084
                    attrs={
1085
                        "sync_mode": False,
Y
Yancey1989 已提交
1086
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1087 1088 1089 1090 1091
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1092
                    })
1093 1094 1095 1096 1097 1098
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1099 1100
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
W
Wu Yi 已提交
1101
            prefetch_block = pserver_program._create_block(optimize_block.idx)
Q
qiaolongfei 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1127 1128

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1129
                                     pre_block_idx, grad_to_block_id):
1130 1131
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1132 1133
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1134

T
tangwei12 已提交
1135
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1136 1137
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1138 1139 1140
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1141 1142
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1143
            shape=table_shape,
Y
Yancey1989 已提交
1144 1145 1146
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1147 1148
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1149
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1150
            self.origin_program.global_block().vars[grad_var_name(
1151
                self.table_name)])
1152 1153 1154 1155

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1156 1157
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1158
        ][0]
W
Wu Yi 已提交
1159
        table_opt_block = pserver_program._create_block(pre_block_idx)
1160

1161 1162 1163
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1164
            pserver_side_table_grad_list = [
1165 1166 1167 1168 1169 1170 1171 1172 1173
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1174
            # append sum op for pserver_side_table_grad_list
1175 1176
            table_opt_block.append_op(
                type="sum",
1177
                inputs={"X": pserver_side_table_grad_list},
1178 1179
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1180 1181
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1182
            origin_grad_name = grad_var.name
1183 1184
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1185 1186
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1187
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1188
            grad_var = pserver_program.global_block()._rename_var(
1189
                origin_grad_name, splited_grad_name)
1190 1191 1192 1193 1194 1195 1196 1197 1198

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1199
        # only support sgd now
1200 1201 1202 1203
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1204
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1205

1206 1207 1208
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1209 1210
        return table_opt_block

T
tangwei12 已提交
1211 1212 1213 1214 1215 1216
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1217
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1218
            name="kLookupTablePath",
T
tangwei12 已提交
1219 1220
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1221

W
Wu Yi 已提交
1222
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1223
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1224 1225 1226 1227
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1228
            attrs={'file_path': "none"})
T
tangwei12 已提交
1229 1230 1231

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1232 1233 1234 1235 1236
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1237
        Create vars for each split.
T
typhoonzero 已提交
1238 1239
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1240 1241 1242 1243
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1244
        Returns:
1245
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1246
                from original var name to each var split.
T
typhoonzero 已提交
1247
        """
1248 1249

        # varname->[(block_id, current_block_size)]
1250
        block_map = collections.OrderedDict()
1251

1252
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1253 1254
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1255
            if varname not in block_map:
T
typhoonzero 已提交
1256
                block_map[varname] = []
1257
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1258

M
minqiyang 已提交
1259
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1260
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1261
            if len(splited) == 1:
1262
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1263 1264
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1265
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1266 1267 1268 1269 1270
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1271
                continue
T
typhoonzero 已提交
1272
            var_mapping[varname] = []
T
typhoonzero 已提交
1273 1274 1275 1276
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1277

T
typhoonzero 已提交
1278
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1279
                size = block[1]
M
minqiyang 已提交
1280
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1281 1282 1283
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1284
                new_var_name = ""
1285
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1286 1287 1288 1289 1290
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1291
                var = program.global_block().create_var(
T
typhoonzero 已提交
1292 1293
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1294
                    dtype=orig_var.dtype,
1295
                    type=orig_var.type,
T
typhoonzero 已提交
1296
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1297
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1298
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1299
        return var_mapping
T
done  
typhoonzero 已提交
1300

W
Wu Yi 已提交
1301
    def _create_splited_vars(self, source_var, block, tag):
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1312 1313 1314 1315 1316 1317
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1318
            persistable=persistable)
T
done  
typhoonzero 已提交
1319

Y
Yancey1989 已提交
1320
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1321 1322 1323 1324
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1325
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1326 1327 1328 1329
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1330 1331 1332 1333
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1334 1335 1336 1337
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1338
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1339 1340 1341 1342
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1343 1344 1345 1346
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1347 1348 1349
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1350

T
typhoonzero 已提交
1351 1352 1353 1354
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1355
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1371 1372
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1373 1374 1375 1376 1377
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1378 1379
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1380
        orig_var_name = ""
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1391
        else:
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1414
            return None
1415 1416 1417 1418
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1419
        else:
1420
            merged_var_name = orig_varname
1421 1422

        merged_var = pserver_block.vars[merged_var_name]
1423 1424 1425
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1426
            for i in range(self.trainer_num):
1427 1428 1429 1430 1431 1432 1433
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1434 1435
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1436 1437 1438 1439 1440
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1441
        return merged_var
T
typhoonzero 已提交
1442

1443
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1444
                            grad_to_block_id, origin_program, merged_var):
1445
        program = optimize_block.program
T
typhoonzero 已提交
1446
        pserver_block = program.global_block()
1447
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1458
        for key in opt_op.input_names:
T
typhoonzero 已提交
1459 1460 1461
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1462
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1463 1464
                if not param_block:
                    return
T
typhoonzero 已提交
1465
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1466
                    name=param_block.name,
T
typhoonzero 已提交
1467
                    persistable=True,
T
typhoonzero 已提交
1468 1469 1470
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1471
            elif key == "LearningRate":
1472
                # learning rate variable has already be created by non-optimize op,
1473
                # don't create it once again.
1474
                lr_varname = opt_op.input(key)[0]
1475
                if lr_varname in pserver_block.vars:
1476 1477 1478 1479 1480 1481 1482 1483 1484
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1485

T
typhoonzero 已提交
1486
        for key in opt_op.input_names:
1487
            new_shape = None
W
Wu Yi 已提交
1488
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1489
                continue
1490
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1491 1492 1493 1494
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1495
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1496 1497 1498 1499 1500
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1501

1502
        # change output's ParamOut variable
1503 1504
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1505
        outputs["ParamOut"] = new_inputs["Param"]
1506
        optimize_block.append_op(
T
typhoonzero 已提交
1507 1508
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1509
            outputs=outputs,
G
gongweibao 已提交
1510
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1511

1512 1513
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1514
        for _, g in six.iteritems(var_dict):
1515 1516 1517 1518 1519 1520
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1521 1522 1523
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1524
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1525 1526 1527 1528
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1529
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1530 1531 1532

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1533
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1534 1535 1536 1537
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1538
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1539

Y
Yancey1989 已提交
1540
        return block.append_op(
G
gongweibao 已提交
1541
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1542 1543

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1544
        program = optimize_block.program
1545
        # Append the ops for parameters that do not need to be optimized/updated
1546 1547
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1548
        for key, varlist in six.iteritems(inputs):
1549 1550
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1551
            for var in varlist:
1552 1553 1554 1555 1556 1557
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1558
                elif var.name not in program.global_block().vars:
1559
                    program.global_block().create_var(
T
typhoonzero 已提交
1560 1561 1562 1563 1564
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1565 1566
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1567
        for key, varlist in six.iteritems(outputs):
1568 1569 1570
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1571 1572 1573 1574
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1575
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1576
                    program.global_block()._clone_variable(var)
1577

Y
Yancey1989 已提交
1578
        return optimize_block.append_op(
T
typhoonzero 已提交
1579
            type=opt_op.type,
T
typhoonzero 已提交
1580 1581
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1582
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1583

1584 1585 1586 1587
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1588 1589
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1590 1591 1592 1593 1594 1595
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1596 1597
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1598 1599 1600 1601 1602 1603
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1604
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1605 1606
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1607 1608 1609 1610 1611 1612 1613
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1614
        if op.input("Param")[0] in param_names:
1615 1616 1617
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1618
                param = op.input("Param")[0]
T
typhoonzero 已提交
1619
                if same_or_split_var(n, param) and n != param:
1620 1621 1622
                    return True
            return False

T
typhoonzero 已提交
1623
    def _get_input_map_from_op(self, varmap, op):
1624
        """Returns a dict from op input name to the vars in varmap."""
1625
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1637
        """Returns a dict from op output name to the vars in varmap."""
1638
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1648 1649

    def _get_lr_ops(self):
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
            if int(op.attr(RPC_OP_ROLE_ATTR_NAME)) == int(
                    LR_SCHED_OP_ROLE_ATTR_VALUE):
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1660 1661 1662 1663
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1664
            if self._is_optimizer_op(op):
1665 1666 1667 1668
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1669
        block = self.origin_program.global_block()
1670 1671 1672 1673 1674
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1675

1676 1677 1678 1679 1680
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1681
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1682 1683 1684 1685 1686 1687
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1688 1689
                    # we only need to append op for once
                    break
1690
        return lr_ops
Y
Yancey1989 已提交
1691

W
Wu Yi 已提交
1692 1693 1694 1695 1696
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1697 1698
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1699 1700 1701
            return True
        return False

Y
Yancey1989 已提交
1702
    def _get_optimize_pass(self):
1703
        """
1704
        Get optimizer operators, parameters and gradients from origin_program
1705 1706 1707 1708
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1709 1710 1711
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1712 1713
        # tmp set to dedup
        optimize_params = set()
1714
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1715
        for op in block.ops:
W
Wu Yi 已提交
1716
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1717
                opt_ops.append(op)
1718 1719 1720 1721 1722 1723
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1724 1725
                        params_grads.append([
                            origin_var_dict[param_name],
1726
                            origin_var_dict[grad_name]
1727
                        ])
Y
Yancey1989 已提交
1728 1729 1730
            else:
                pass
        return opt_ops, params_grads