test_gradient_clip.py 23.7 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

C
chengduo 已提交
17
import numpy as np
18 19
from fake_reader import fake_imdb_reader

C
chengduo 已提交
20 21
import paddle
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
from paddle.fluid.clip import _allow_pure_fp16_global_norm_clip
C
chengduo 已提交
24

W
WangXi 已提交
25 26
paddle.enable_static()

C
chengduo 已提交
27

28 29 30
def bow_net(
    data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2
):
C
chengduo 已提交
31 32 33 34 35
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
36 37 38
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim]
    )
C
chengduo 已提交
39
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
40
    bow_tanh = paddle.tanh(bow)
C
chengduo 已提交
41 42 43
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
44 45 46
    cost = paddle.nn.functional.cross_entropy(
        input=prediction, label=label, reduction='none', use_softmax=False
    )
47
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
48 49 50 51 52 53

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
54
        self.word_dict_len = 5147
C
chengduo 已提交
55
        self.BATCH_SIZE = 2
56 57
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
58
        self.clip_gradient = lambda x: None
59 60 61 62
        self.init()

    def init(self):
        pass
C
chengduo 已提交
63 64

    def get_places(self):
65
        places = [fluid.CPUPlace()]
C
chengduo 已提交
66
        if core.is_compiled_with_cuda():
67
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
68 69
        return places

70 71 72
    def check_clip_result(self, out, out_clip):
        pass

73
    def check_gradient_clip(self, place, dtype='float32'):
74 75
        prog = fluid.Program()
        startup_program = fluid.Program()
76 77 78
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
79 80
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
81 82 83 84 85
            if dtype != 'float32':
                image_cast = paddle.cast(image, dtype)
                hidden = fluid.layers.fc(input=image_cast, size=32, act='relu')
            else:
                hidden = fluid.layers.fc(input=image, size=32, act='relu')
86
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
87

88 89 90
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
91
            avg_cost = paddle.mean(cost)
C
chengduo 已提交
92 93 94 95 96 97 98

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

99 100
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
101 102 103
        with fluid.program_guard(
            main_program=prog_clip, startup_program=startup_program
        ):
104
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
105 106 107 108

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

109
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
110 111 112 113
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

114 115
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
116 117 118
        out_clip = exe.run(
            prog_clip, feed=feeder.feed(data), fetch_list=grad_clip_list
        )
119
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
120 121

    def check_sparse_gradient_clip(self, place):
122 123
        prog = fluid.Program()
        startup_program = fluid.Program()
124 125 126 127 128 129
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
            data = fluid.data(
                name="words", shape=[-1, 1], dtype="int64", lod_level=1
            )
130
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
131
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
132

133
            self.backward_and_optimize(cost)
C
chengduo 已提交
134 135 136 137 138 139 140

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
141
        self.assertEqual((1,), val.shape)
C
chengduo 已提交
142 143
        self.assertFalse(np.isnan(val))

144
    def backward_and_optimize(self, cost):
145 146 147 148 149 150 151 152 153 154
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
155
            global_norm += np.sum(np.square(v))
156 157 158 159 160 161 162
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
163 164 165 166 167
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
168 169 170 171
                err_msg='gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}'.format(
                    u, v, u - v
                ),
            )
172

173
    # test whether the output is right when use 'set_gradient_clip'
174 175 176 177 178 179 180 181 182
    def test_old_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

183
    # test whether the output is right when use grad_clip
184 185 186 187
    def test_new_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)
C
chengduo 已提交
188

189 190 191
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

192
    # test whether the output is right when use grad_clip under float64
193 194 195 196 197 198 199 200
    def test_new_gradient_clip_fp64(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace(), "float64")

201 202 203
    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
        def backward_func(cost):
204
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
205
            fluid.clip.set_gradient_clip(clip)
206 207 208
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.01, grad_clip=clip
            )
209 210
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
211 212 213 214
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
215 216 217
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

218 219
    # raise typeError
    def test_tpyeError(self):
220
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
221
        with self.assertRaises(TypeError):
222 223 224
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.1, grad_clip="test"
            )
225

226 227 228
    # if grad is None or not need clip
    def test_none_grad_fp32(self):
        ops = self._test_none_grad_helper("float32")
229 230 231 232 233 234 235 236 237 238 239 240 241 242
        self.assertListEqual(
            ops,
            [
                'squared_l2_norm',
                'squared_l2_norm',
                'sum',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'elementwise_mul',
                'elementwise_mul',
            ],
        )
243 244 245

    def test_none_grad_fp16(self):
        ops = self._test_none_grad_helper("float16")
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        self.assertListEqual(
            ops,
            [
                'square',
                'reduce_sum',
                'square',
                'reduce_sum',
                'sum',
                'cast',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'cast',
                'elementwise_mul',
                'cast',
                'elementwise_mul',
            ],
        )
265 266 267 268

    def _test_none_grad_helper(self, dtype):
        prog = fluid.Program()
        startup_program = fluid.Program()
269 270 271
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
272
            clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
273 274 275 276 277 278 279 280 281 282
            x = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="x", shape=[2, 3], dtype=dtype)
            )
            y = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="y", shape=[2, 3], dtype=dtype)
            )
283 284 285 286 287 288

            # (x, None) should not be returned
            params_grads = [(x, None), (x, y), (y, x)]
            params_grads = clip(params_grads)
            self.assertTrue(
                len(params_grads) == 2,
289
                "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!",
290 291 292 293 294
            )

            ops = [op.type for op in x.block.ops]
        return ops

295 296 297 298 299 300 301 302 303 304

class TestGradientClipByNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
305 306 307 308 309
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
310 311
                err_msg='gradient clip by norm has wrong results!',
            )
312

313
    # test whether the output is right when use grad_clip
314
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
315 316 317 318 319
        def func(params_grads):
            clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
320 321 322 323
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
324
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
325 326 327 328 329 330 331 332 333 334 335 336 337 338
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
339 340 341 342 343 344

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
345
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!",
346 347 348
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
349 350
            "ClipGradByNorm: grad should not be clipped when filtered out!",
        )
351 352 353 354 355 356 357 358 359 360 361 362


class TestGradientClipByValue(TestGradientClip):
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
363 364 365 366 367
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
368 369
                err_msg='gradient clip by value has wrong results!',
            )
370

371
    # test whether the output is right when use grad_clip
372
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
373 374 375 376 377
        def func(params_grads):
            clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
            return clip(params_grads)

        self.clip_gradient = func
378 379 380 381
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
382
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
383 384 385 386 387 388 389 390 391 392 393 394 395 396
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
397 398 399 400 401 402

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
403
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!",
404 405 406
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
407 408
            "ClipGradByValue: grad should not be clipped when filtered out!",
        )
409 410 411 412 413


class TestDygraphGradientClip(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
414
            linear = paddle.nn.Linear(5, 5)
415
            inputs = paddle.uniform([16, 5], min=-10, max=10).astype('float32')
416
            out = linear(fluid.dygraph.to_variable(inputs))
417
            loss = paddle.mean(out)
418 419
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
420 421
                learning_rate=0.0,
                parameter_list=linear.parameters(),
422 423
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1),
            )
424 425 426 427 428 429 430 431 432 433
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
434 435
            clip_norm=self.clip_norm
        )
436
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
437 438
            clip_norm=self.clip_norm
        )
439 440 441

    def check_clip_result(self, loss, optimizer):
        # if grad is None
442 443 444 445 446 447
        x = fluid.dygraph.to_variable(
            np.array([2, 3]).astype("float32"), name="x"
        )
        y = fluid.dygraph.to_variable(
            np.array([3, 4]).astype("float32"), name="y"
        )
448 449
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
450
        opt, params_grads = optimizer.minimize(loss)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
470
            np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
471
            "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
472 473
            % (a, b),
        )
474 475 476 477 478


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
479
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
480 481 482 483 484 485 486

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
487
        opt, params_grads = optimizer.minimize(loss)
488 489 490 491 492 493 494 495 496 497 498
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
499
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
500
                "gradient clip by norm has wrong results, expetcd:%f, but received:%f"
501 502
                % (a, b),
            )
503 504 505 506 507 508


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
509
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
510 511 512 513 514 515

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
516
        opt, params_grads = optimizer.minimize(loss)
517 518 519 520 521 522
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
523 524 525 526 527
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
528 529
                err_msg='gradient clip by value has wrong results!',
            )
530

C
chengduo 已提交
531

532 533
class SimpleNet(paddle.nn.Layer):
    def __init__(self):
534
        super().__init__()
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
        self.linear = paddle.nn.Linear(5, 5)
        self.batch_norm = paddle.nn.BatchNorm(5)

    def forward(self, x):
        x = self.linear(x)
        x = self.batch_norm(x)
        return x


class TestDygraphGradientClipFP16(unittest.TestCase):
    def test_gradient_clip(self):
        if fluid.core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                paddle.seed(10)
                model = SimpleNet()
                sgd_optimizer = paddle.optimizer.SGD(
551 552
                    learning_rate=0.0, parameters=model.parameters()
                )
553
                model, sgd_optimizer = paddle.amp.decorate(
554 555
                    models=model, optimizers=sgd_optimizer, level='O2'
                )
556
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
557 558 559
                inputs = paddle.uniform([1, 5], min=-10, max=10).astype(
                    'float32'
                )
560 561
                with paddle.amp.auto_cast(level='O2'):
                    out = model(fluid.dygraph.to_variable(inputs))
562
                    loss = paddle.mean(out)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.unscale_(sgd_optimizer)
                # before clip
                params_grads = []
                for param in model.parameters():
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        params_grads.append((param, param._grad_ivar()))
                _, grads = zip(*params_grads)
                # clip grads
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.8)
                params_grads = clip(params_grads)
                _, grads_clip = zip(*params_grads)
578
                # param update
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
                scaler.step(sgd_optimizer)
                scaler.update()

                global_norm = 0
                for u in grads:
                    u = u.numpy()
                    global_norm += np.sum(np.power(u, 2))
                global_norm = np.sqrt(global_norm)
                global_norm_clip = 0
                for v in grads_clip:
                    v = v.numpy()
                    global_norm_clip += np.sum(np.power(v, 2))
                global_norm_clip = np.sqrt(global_norm_clip)

                a = np.minimum(global_norm, 0.8)
                b = global_norm_clip
                self.assertTrue(
596
                    np.isclose(a=a, b=b, rtol=1e-3, atol=1e-8),
597
                    "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
598 599
                    % (a, b),
                )
600 601 602 603 604


class TestDygraphGradientClipFP64(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
605
            inputs = paddle.uniform([16, 5], min=-10, max=10).astype('float32')
606
            linear = paddle.nn.Linear(5, 5)
607
            out = linear(fluid.dygraph.to_variable(inputs))
608
            loss = paddle.mean(out)
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
            loss.backward()
            # before clip
            params_grads = []
            for param in linear.parameters():
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    params_grads.append((param, param._grad_ivar()))
            _, grads = zip(*params_grads)
            # clip grads
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.1)
            params_grads = clip(params_grads)
            _, grads_clip = zip(*params_grads)

            global_norm = 0
            for u in grads:
                u = u.numpy()
                global_norm += np.sum(np.power(u, 2))
            global_norm = np.sqrt(global_norm)

            global_norm_clip = 0
            for v in grads_clip:
                v = v.numpy()
                print(v)
                global_norm_clip += np.sum(np.power(v, 2))
            global_norm_clip = np.sqrt(global_norm_clip)
            print(global_norm_clip)

            a = np.minimum(global_norm, 0.1)
            b = global_norm_clip

            self.assertTrue(
641
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
642
                "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
643 644
                % (a, b),
            )
645 646


647 648 649 650 651 652 653 654 655 656 657
class TestPureFP16ClipGradByGlobalNorm(unittest.TestCase):
    def check_main(self, expected_has_cast_op):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            names = ["p0", "p1"]
            shapes = [[2, 3], [4, 5]]

            param_and_grads = []
            main_block = main_prog.global_block()
            for name, shape in zip(names, shapes):
658 659 660 661 662 663
                p = main_block.create_parameter(
                    name=name, shape=shape, dtype='float16'
                )
                g = main_block.create_parameter(
                    name=p.name + '@GRAD', shape=p.shape, dtype=p.dtype
                )
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
                param_and_grads.append((p, g))

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            clip(param_and_grads)
            actual_has_cast = any(op.type == 'cast' for op in main_block.ops)
            self.assertEqual(actual_has_cast, expected_has_cast_op)

    def test_main(self):
        self.check_main(True)
        _allow_pure_fp16_global_norm_clip(True)
        self.check_main(False)
        _allow_pure_fp16_global_norm_clip(False)
        self.check_main(True)


C
chengduo 已提交
679 680
if __name__ == '__main__':
    unittest.main()