test_gradient_clip.py 16.0 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
22 23
import six
from fake_reader import fake_imdb_reader
C
chengduo 已提交
24

W
WangXi 已提交
25 26
paddle.enable_static()

C
chengduo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

def bow_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
55
        self.word_dict_len = 5147
C
chengduo 已提交
56
        self.BATCH_SIZE = 2
57 58
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
59
        self.clip_gradient = lambda x: None
60 61 62 63
        self.init()

    def init(self):
        pass
C
chengduo 已提交
64 65

    def get_places(self):
66
        places = [fluid.CPUPlace()]
C
chengduo 已提交
67
        if core.is_compiled_with_cuda():
68
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
69 70
        return places

71 72 73 74 75 76
    def check_clip_result(self, out, out_clip):
        pass

    def check_gradient_clip(self, place):
        prog = fluid.Program()
        startup_program = fluid.Program()
C
chengduo 已提交
77 78
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
79 80
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
81 82
            hidden = fluid.layers.fc(input=image, size=32, act='relu')
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
83 84 85 86 87 88 89 90 91 92

            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(cost)

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

93 94
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
95 96
        with fluid.program_guard(
                main_program=prog_clip, startup_program=startup_program):
97
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
98 99 100 101

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

102
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
103 104 105 106
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

107 108 109 110 111 112
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
        out_clip = exe.run(prog_clip,
                           feed=feeder.feed(data),
                           fetch_list=grad_clip_list)
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
113 114

    def check_sparse_gradient_clip(self, place):
115 116
        prog = fluid.Program()
        startup_program = fluid.Program()
C
chengduo 已提交
117 118
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
119 120 121
            data = fluid.data(
                name="words", shape=[-1, 1], dtype="int64", lod_level=1)
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
122
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
123

124
            self.backward_and_optimize(cost)
C
chengduo 已提交
125 126 127 128 129 130 131 132 133 134

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
        self.assertEqual((1, ), val.shape)
        self.assertFalse(np.isnan(val))

135
    def backward_and_optimize(self, cost):
136 137 138 139 140 141 142 143 144 145
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
146
            global_norm += np.sum(np.square(v))
147 148 149 150 151 152 153 154 155 156
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-5, atol=1e-8),
W
WangXi 已提交
157 158
                "gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}".
                format(u, v, u - v))
159 160 161 162 163 164 165 166 167 168 169

    # test whether the ouput is right when use 'set_gradient_clip'
    def test_old_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

170
    # test whether the ouput is right when use grad_clip
171 172 173 174
    def test_new_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)
C
chengduo 已提交
175

176 177 178 179 180 181
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
        def backward_func(cost):
182
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
183
            fluid.clip.set_gradient_clip(clip)
184 185 186 187
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                                grad_clip=clip)
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
188 189 190 191
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
192 193 194
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

195 196
    # if grad is None or not need clip
    def test_none_grad(self):
197
        clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
198 199 200 201 202 203 204 205 206
        x = fluid.default_main_program().global_block().create_parameter(
            name="x", shape=[2, 3], dtype="float32")
        y = fluid.default_main_program().global_block().create_parameter(
            name="y", shape=[2, 3], dtype="float32")

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y), (y, x)]
        params_grads = clip(params_grads)
        self.assertTrue(
W
WangXi 已提交
207
            len(params_grads) == 2,
208 209
            "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!"
        )
W
WangXi 已提交
210 211 212 213 214 215 216

        ops = [op.type for op in x.block.ops]
        self.assertListEqual(ops, [
            'squared_l2_norm', 'squared_l2_norm', 'sum', 'sqrt',
            'fill_constant', 'elementwise_max', 'elementwise_div',
            'elementwise_mul', 'elementwise_mul'
        ])
217 218 219

    # raise typeError
    def test_tpyeError(self):
220
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
221
        with self.assertRaises(TypeError):
222 223
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1,
                                                grad_clip="test")
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239


class TestGradientClipByNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-5, atol=1e-8),
                "gradient clip by norm has wrong results!")

240
    # test whether the ouput is right when use grad_clip
241
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
242 243 244 245 246
        def func(params_grads):
            clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
247 248 249 250
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
251
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
252
        x = fluid.default_main_program().global_block().create_parameter(
253
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
254
        y = fluid.default_main_program().global_block().create_parameter(
255
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
256 257 258 259 260 261

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
262
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!"
263 264 265
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
266
            "ClipGradByNorm: grad should not be clipped when filtered out!")
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283


class TestGradientClipByValue(TestGradientClip):
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-6, atol=1e-8),
                "gradient clip by value has wrong results!")

284
    # test whether the ouput is right when use grad_clip
285
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
286 287 288 289 290
        def func(params_grads):
            clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
            return clip(params_grads)

        self.clip_gradient = func
291 292 293 294
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
295
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
296
        x = fluid.default_main_program().global_block().create_parameter(
297
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
298
        y = fluid.default_main_program().global_block().create_parameter(
299
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
300 301 302 303 304 305

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
306
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!"
307 308 309
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
310
            "ClipGradByValue: grad should not be clipped when filtered out!")
311 312 313 314 315 316 317 318 319 320 321 322


class TestDygraphGradientClip(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
            linear = fluid.dygraph.Linear(5, 5)
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10).astype('float32')
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
323 324 325
                learning_rate=0.0,
                parameter_list=linear.parameters(),
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1))
326 327 328 329 330 331 332 333 334 335
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
336
            clip_norm=self.clip_norm)
337 338 339 340 341 342 343 344 345 346 347
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
            clip_norm=self.clip_norm)

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(
            np.array([2, 3]).astype("float32"), name="x")
        y = fluid.dygraph.to_variable(
            np.array([3, 4]).astype("float32"), name="y")
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
348
        opt, params_grads = optimizer.minimize(loss)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
            np.isclose(
                a=a, b=b, rtol=1e-6, atol=1e-8),
            "gradient clip by global norm has wrong results, expetcd:%f, but recieved:%f"
            % (a, b))


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
377
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
378 379 380 381 382 383 384

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
385
        opt, params_grads = optimizer.minimize(loss)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
                np.isclose(
                    a=a, b=b, rtol=1e-6, atol=1e-8),
                "gradient clip by norm has wrong results, expetcd:%f, but recieved:%f"
                % (a, b))


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
407
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
408 409 410 411 412 413

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
414
        opt, params_grads = optimizer.minimize(loss)
415 416 417 418 419 420 421 422 423 424 425
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-6, atol=1e-8),
                "gradient clip by value has wrong results!")

C
chengduo 已提交
426 427 428

if __name__ == '__main__':
    unittest.main()