test_gradient_clip.py 23.7 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

C
chengduo 已提交
17
import numpy as np
18 19
from fake_reader import fake_imdb_reader

C
chengduo 已提交
20 21
import paddle
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
from paddle.fluid.clip import _allow_pure_fp16_global_norm_clip
C
chengduo 已提交
24

W
WangXi 已提交
25 26
paddle.enable_static()

C
chengduo 已提交
27

28 29 30
def bow_net(
    data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2
):
C
chengduo 已提交
31 32 33 34 35
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
36 37 38
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim]
    )
C
chengduo 已提交
39
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
40
    bow_tanh = paddle.tanh(bow)
C
chengduo 已提交
41 42 43 44
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
45
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
46 47 48 49 50 51

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
52
        self.word_dict_len = 5147
C
chengduo 已提交
53
        self.BATCH_SIZE = 2
54 55
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
56
        self.clip_gradient = lambda x: None
57 58 59 60
        self.init()

    def init(self):
        pass
C
chengduo 已提交
61 62

    def get_places(self):
63
        places = [fluid.CPUPlace()]
C
chengduo 已提交
64
        if core.is_compiled_with_cuda():
65
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
66 67
        return places

68 69 70
    def check_clip_result(self, out, out_clip):
        pass

71
    def check_gradient_clip(self, place, dtype='float32'):
72 73
        prog = fluid.Program()
        startup_program = fluid.Program()
74 75 76
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
77 78
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
79 80 81 82 83
            if dtype != 'float32':
                image_cast = paddle.cast(image, dtype)
                hidden = fluid.layers.fc(input=image_cast, size=32, act='relu')
            else:
                hidden = fluid.layers.fc(input=image, size=32, act='relu')
84
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
85 86

            cost = fluid.layers.cross_entropy(input=predict, label=label)
87
            avg_cost = paddle.mean(cost)
C
chengduo 已提交
88 89 90 91 92 93 94

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

95 96
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
97 98 99
        with fluid.program_guard(
            main_program=prog_clip, startup_program=startup_program
        ):
100
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
101 102 103 104

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

105
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
106 107 108 109
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

110 111
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
112 113 114
        out_clip = exe.run(
            prog_clip, feed=feeder.feed(data), fetch_list=grad_clip_list
        )
115
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
116 117

    def check_sparse_gradient_clip(self, place):
118 119
        prog = fluid.Program()
        startup_program = fluid.Program()
120 121 122 123 124 125
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
            data = fluid.data(
                name="words", shape=[-1, 1], dtype="int64", lod_level=1
            )
126
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
127
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
128

129
            self.backward_and_optimize(cost)
C
chengduo 已提交
130 131 132 133 134 135 136

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
137
        self.assertEqual((1,), val.shape)
C
chengduo 已提交
138 139
        self.assertFalse(np.isnan(val))

140
    def backward_and_optimize(self, cost):
141 142 143 144 145 146 147 148 149 150
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
151
            global_norm += np.sum(np.square(v))
152 153 154 155 156 157 158
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
159 160 161 162 163
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
164 165 166 167
                err_msg='gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}'.format(
                    u, v, u - v
                ),
            )
168

169
    # test whether the output is right when use 'set_gradient_clip'
170 171 172 173 174 175 176 177 178
    def test_old_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

179
    # test whether the output is right when use grad_clip
180 181 182 183
    def test_new_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)
C
chengduo 已提交
184

185 186 187
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

188
    # test whether the output is right when use grad_clip under float64
189 190 191 192 193 194 195 196
    def test_new_gradient_clip_fp64(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace(), "float64")

197 198 199
    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
        def backward_func(cost):
200
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
201
            fluid.clip.set_gradient_clip(clip)
202 203 204
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.01, grad_clip=clip
            )
205 206
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
207 208 209 210
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
211 212 213
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

214 215
    # raise typeError
    def test_tpyeError(self):
216
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
217
        with self.assertRaises(TypeError):
218 219 220
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.1, grad_clip="test"
            )
221

222 223 224
    # if grad is None or not need clip
    def test_none_grad_fp32(self):
        ops = self._test_none_grad_helper("float32")
225 226 227 228 229 230 231 232 233 234 235 236 237 238
        self.assertListEqual(
            ops,
            [
                'squared_l2_norm',
                'squared_l2_norm',
                'sum',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'elementwise_mul',
                'elementwise_mul',
            ],
        )
239 240 241

    def test_none_grad_fp16(self):
        ops = self._test_none_grad_helper("float16")
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        self.assertListEqual(
            ops,
            [
                'square',
                'reduce_sum',
                'square',
                'reduce_sum',
                'sum',
                'cast',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'cast',
                'elementwise_mul',
                'cast',
                'elementwise_mul',
            ],
        )
261 262 263 264

    def _test_none_grad_helper(self, dtype):
        prog = fluid.Program()
        startup_program = fluid.Program()
265 266 267
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
268
            clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
269 270 271 272 273 274 275 276 277 278
            x = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="x", shape=[2, 3], dtype=dtype)
            )
            y = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="y", shape=[2, 3], dtype=dtype)
            )
279 280 281 282 283 284

            # (x, None) should not be returned
            params_grads = [(x, None), (x, y), (y, x)]
            params_grads = clip(params_grads)
            self.assertTrue(
                len(params_grads) == 2,
285
                "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!",
286 287 288 289 290
            )

            ops = [op.type for op in x.block.ops]
        return ops

291 292 293 294 295 296 297 298 299 300

class TestGradientClipByNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
301 302 303 304 305
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
306 307
                err_msg='gradient clip by norm has wrong results!',
            )
308

309
    # test whether the output is right when use grad_clip
310
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
311 312 313 314 315
        def func(params_grads):
            clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
316 317 318 319
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
320
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
321 322 323 324 325 326 327 328 329 330 331 332 333 334
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
335 336 337 338 339 340

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
341
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!",
342 343 344
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
345 346
            "ClipGradByNorm: grad should not be clipped when filtered out!",
        )
347 348 349 350 351 352 353 354 355 356 357 358


class TestGradientClipByValue(TestGradientClip):
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
359 360 361 362 363
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
364 365
                err_msg='gradient clip by value has wrong results!',
            )
366

367
    # test whether the output is right when use grad_clip
368
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
369 370 371 372 373
        def func(params_grads):
            clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
            return clip(params_grads)

        self.clip_gradient = func
374 375 376 377
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
378
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
379 380 381 382 383 384 385 386 387 388 389 390 391 392
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
393 394 395 396 397 398

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
399
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!",
400 401 402
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
403 404
            "ClipGradByValue: grad should not be clipped when filtered out!",
        )
405 406 407 408 409


class TestDygraphGradientClip(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
410
            linear = paddle.nn.Linear(5, 5)
411 412 413
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10
            ).astype('float32')
414
            out = linear(fluid.dygraph.to_variable(inputs))
415
            loss = paddle.mean(out)
416 417
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
418 419
                learning_rate=0.0,
                parameter_list=linear.parameters(),
420 421
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1),
            )
422 423 424 425 426 427 428 429 430 431
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
432 433
            clip_norm=self.clip_norm
        )
434
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
435 436
            clip_norm=self.clip_norm
        )
437 438 439

    def check_clip_result(self, loss, optimizer):
        # if grad is None
440 441 442 443 444 445
        x = fluid.dygraph.to_variable(
            np.array([2, 3]).astype("float32"), name="x"
        )
        y = fluid.dygraph.to_variable(
            np.array([3, 4]).astype("float32"), name="y"
        )
446 447
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
448
        opt, params_grads = optimizer.minimize(loss)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
468
            np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
469
            "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
470 471
            % (a, b),
        )
472 473 474 475 476


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
477
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
478 479 480 481 482 483 484

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
485
        opt, params_grads = optimizer.minimize(loss)
486 487 488 489 490 491 492 493 494 495 496
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
497
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
498
                "gradient clip by norm has wrong results, expetcd:%f, but received:%f"
499 500
                % (a, b),
            )
501 502 503 504 505 506


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
507
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
508 509 510 511 512 513

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
514
        opt, params_grads = optimizer.minimize(loss)
515 516 517 518 519 520
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
521 522 523 524 525
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
526 527
                err_msg='gradient clip by value has wrong results!',
            )
528

C
chengduo 已提交
529

530 531
class SimpleNet(paddle.nn.Layer):
    def __init__(self):
532
        super().__init__()
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        self.linear = paddle.nn.Linear(5, 5)
        self.batch_norm = paddle.nn.BatchNorm(5)

    def forward(self, x):
        x = self.linear(x)
        x = self.batch_norm(x)
        return x


class TestDygraphGradientClipFP16(unittest.TestCase):
    def test_gradient_clip(self):
        if fluid.core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                paddle.seed(10)
                model = SimpleNet()
                sgd_optimizer = paddle.optimizer.SGD(
549 550
                    learning_rate=0.0, parameters=model.parameters()
                )
551
                model, sgd_optimizer = paddle.amp.decorate(
552 553
                    models=model, optimizers=sgd_optimizer, level='O2'
                )
554
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
555 556 557
                inputs = fluid.layers.uniform_random(
                    [1, 5], min=-10, max=10
                ).astype('float32')
558 559
                with paddle.amp.auto_cast(level='O2'):
                    out = model(fluid.dygraph.to_variable(inputs))
560
                    loss = paddle.mean(out)
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.unscale_(sgd_optimizer)
                # before clip
                params_grads = []
                for param in model.parameters():
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        params_grads.append((param, param._grad_ivar()))
                _, grads = zip(*params_grads)
                # clip grads
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.8)
                params_grads = clip(params_grads)
                _, grads_clip = zip(*params_grads)
576
                # param update
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
                scaler.step(sgd_optimizer)
                scaler.update()

                global_norm = 0
                for u in grads:
                    u = u.numpy()
                    global_norm += np.sum(np.power(u, 2))
                global_norm = np.sqrt(global_norm)
                global_norm_clip = 0
                for v in grads_clip:
                    v = v.numpy()
                    global_norm_clip += np.sum(np.power(v, 2))
                global_norm_clip = np.sqrt(global_norm_clip)

                a = np.minimum(global_norm, 0.8)
                b = global_norm_clip
                self.assertTrue(
594
                    np.isclose(a=a, b=b, rtol=1e-3, atol=1e-8),
595
                    "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
596 597
                    % (a, b),
                )
598 599 600 601 602


class TestDygraphGradientClipFP64(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
603 604
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10
605 606
            ).astype('float32')
            linear = paddle.nn.Linear(5, 5)
607
            out = linear(fluid.dygraph.to_variable(inputs))
608
            loss = paddle.mean(out)
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
            loss.backward()
            # before clip
            params_grads = []
            for param in linear.parameters():
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    params_grads.append((param, param._grad_ivar()))
            _, grads = zip(*params_grads)
            # clip grads
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.1)
            params_grads = clip(params_grads)
            _, grads_clip = zip(*params_grads)

            global_norm = 0
            for u in grads:
                u = u.numpy()
                global_norm += np.sum(np.power(u, 2))
            global_norm = np.sqrt(global_norm)

            global_norm_clip = 0
            for v in grads_clip:
                v = v.numpy()
                print(v)
                global_norm_clip += np.sum(np.power(v, 2))
            global_norm_clip = np.sqrt(global_norm_clip)
            print(global_norm_clip)

            a = np.minimum(global_norm, 0.1)
            b = global_norm_clip

            self.assertTrue(
641
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
642
                "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
643 644
                % (a, b),
            )
645 646


647 648 649 650 651 652 653 654 655 656 657
class TestPureFP16ClipGradByGlobalNorm(unittest.TestCase):
    def check_main(self, expected_has_cast_op):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            names = ["p0", "p1"]
            shapes = [[2, 3], [4, 5]]

            param_and_grads = []
            main_block = main_prog.global_block()
            for name, shape in zip(names, shapes):
658 659 660 661 662 663
                p = main_block.create_parameter(
                    name=name, shape=shape, dtype='float16'
                )
                g = main_block.create_parameter(
                    name=p.name + '@GRAD', shape=p.shape, dtype=p.dtype
                )
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
                param_and_grads.append((p, g))

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            clip(param_and_grads)
            actual_has_cast = any(op.type == 'cast' for op in main_block.ops)
            self.assertEqual(actual_has_cast, expected_has_cast_op)

    def test_main(self):
        self.check_main(True)
        _allow_pure_fp16_global_norm_clip(True)
        self.check_main(False)
        _allow_pure_fp16_global_norm_clip(False)
        self.check_main(True)


C
chengduo 已提交
679 680
if __name__ == '__main__':
    unittest.main()