test_gradient_clip.py 16.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
22 23
import six
from fake_reader import fake_imdb_reader
C
chengduo 已提交
24

W
WangXi 已提交
25 26
paddle.enable_static()

C
chengduo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

def bow_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
55
        self.word_dict_len = 5147
C
chengduo 已提交
56
        self.BATCH_SIZE = 2
57 58
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
59 60 61 62
        self.init()

    def init(self):
        pass
C
chengduo 已提交
63 64

    def get_places(self):
65
        places = [fluid.CPUPlace()]
C
chengduo 已提交
66
        if core.is_compiled_with_cuda():
67
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
68 69
        return places

70 71
    def clip_gradient(self, params_grads):
        pass
72

73 74 75 76 77 78
    def check_clip_result(self, out, out_clip):
        pass

    def check_gradient_clip(self, place):
        prog = fluid.Program()
        startup_program = fluid.Program()
C
chengduo 已提交
79 80
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
81 82
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
83 84
            hidden = fluid.layers.fc(input=image, size=32, act='relu')
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
85 86 87 88 89 90 91 92 93 94

            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(cost)

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

95 96
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
97 98
        with fluid.program_guard(
                main_program=prog_clip, startup_program=startup_program):
99
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
100 101 102 103

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

104
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
105 106 107 108
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

109 110 111 112 113 114
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
        out_clip = exe.run(prog_clip,
                           feed=feeder.feed(data),
                           fetch_list=grad_clip_list)
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
115 116

    def check_sparse_gradient_clip(self, place):
117 118
        prog = fluid.Program()
        startup_program = fluid.Program()
C
chengduo 已提交
119 120
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
121 122 123
            data = fluid.data(
                name="words", shape=[-1, 1], dtype="int64", lod_level=1)
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
124
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
125

126
            self.backward_and_optimize(cost)
C
chengduo 已提交
127 128 129 130 131 132 133 134 135 136 137

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
        self.assertEqual((1, ), val.shape)
        print(val)
        self.assertFalse(np.isnan(val))

138
    def backward_and_optimize(self, cost):
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def clip_gradient(self, params_grads):
        clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
        print(clip)
        return clip(params_grads)

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
154
            global_norm += np.sum(np.square(v))
155 156 157 158 159 160 161 162 163 164
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-5, atol=1e-8),
W
WangXi 已提交
165 166
                "gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}".
                format(u, v, u - v))
167 168 169 170 171 172 173 174 175 176 177

    # test whether the ouput is right when use 'set_gradient_clip'
    def test_old_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

178
    # test whether the ouput is right when use grad_clip
179 180 181 182 183
    def test_new_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            print(clip)
            return clip(params_grads)
C
chengduo 已提交
184

185 186 187 188 189 190
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
        def backward_func(cost):
191
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
192
            fluid.clip.set_gradient_clip(clip)
193 194 195 196
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                                grad_clip=clip)
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
197 198 199 200
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
201 202 203
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

204 205
    # if grad is None or not need clip
    def test_none_grad(self):
206
        clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
207 208 209 210 211 212 213 214 215
        x = fluid.default_main_program().global_block().create_parameter(
            name="x", shape=[2, 3], dtype="float32")
        y = fluid.default_main_program().global_block().create_parameter(
            name="y", shape=[2, 3], dtype="float32")

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y), (y, x)]
        params_grads = clip(params_grads)
        self.assertTrue(
W
WangXi 已提交
216
            len(params_grads) == 2,
217 218
            "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!"
        )
W
WangXi 已提交
219 220 221 222 223 224 225

        ops = [op.type for op in x.block.ops]
        self.assertListEqual(ops, [
            'squared_l2_norm', 'squared_l2_norm', 'sum', 'sqrt',
            'fill_constant', 'elementwise_max', 'elementwise_div',
            'elementwise_mul', 'elementwise_mul'
        ])
226 227 228

    # raise typeError
    def test_tpyeError(self):
229
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
230
        with self.assertRaises(TypeError):
231 232
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1,
                                                grad_clip="test")
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253


class TestGradientClipByNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def clip_gradient(self, params_grads):
        clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
        print(clip)
        return clip(params_grads)

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-5, atol=1e-8),
                "gradient clip by norm has wrong results!")

254
    # test whether the ouput is right when use grad_clip
255 256 257 258 259
    def test_gradient_clip(self):
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
260
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
261
        x = fluid.default_main_program().global_block().create_parameter(
262
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
263
        y = fluid.default_main_program().global_block().create_parameter(
264
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
265 266 267 268 269 270

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
271
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!"
272 273 274
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
275
            "ClipGradByNorm: grad should not be clipped when filtered out!")
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297


class TestGradientClipByValue(TestGradientClip):
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def clip_gradient(self, params_grads):
        clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
        print(clip)
        return clip(params_grads)

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-6, atol=1e-8),
                "gradient clip by value has wrong results!")

298
    # test whether the ouput is right when use grad_clip
299 300 301 302 303
    def test_gradient_clip(self):
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
304
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
305
        x = fluid.default_main_program().global_block().create_parameter(
306
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
307
        y = fluid.default_main_program().global_block().create_parameter(
308
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
309 310 311 312 313 314

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
315
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!"
316 317 318
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
319
            "ClipGradByValue: grad should not be clipped when filtered out!")
320 321 322 323 324 325 326 327 328 329 330 331


class TestDygraphGradientClip(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
            linear = fluid.dygraph.Linear(5, 5)
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10).astype('float32')
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
332 333 334
                learning_rate=0.0,
                parameter_list=linear.parameters(),
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1))
335 336 337 338 339 340 341 342 343 344
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
345
            clip_norm=self.clip_norm)
346 347 348 349 350 351 352 353 354 355 356
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
            clip_norm=self.clip_norm)

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(
            np.array([2, 3]).astype("float32"), name="x")
        y = fluid.dygraph.to_variable(
            np.array([3, 4]).astype("float32"), name="y")
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
357
        opt, params_grads = optimizer.minimize(loss)
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
            np.isclose(
                a=a, b=b, rtol=1e-6, atol=1e-8),
            "gradient clip by global norm has wrong results, expetcd:%f, but recieved:%f"
            % (a, b))


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
386
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
387 388 389 390 391 392 393

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
394
        opt, params_grads = optimizer.minimize(loss)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
                np.isclose(
                    a=a, b=b, rtol=1e-6, atol=1e-8),
                "gradient clip by norm has wrong results, expetcd:%f, but recieved:%f"
                % (a, b))


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
416
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
417 418 419 420 421 422

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
423
        opt, params_grads = optimizer.minimize(loss)
424 425 426 427 428 429 430 431 432 433 434
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-6, atol=1e-8),
                "gradient clip by value has wrong results!")

C
chengduo 已提交
435 436 437

if __name__ == '__main__':
    unittest.main()