test_gradient_clip.py 22.9 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
22 23
import six
from fake_reader import fake_imdb_reader
24
from paddle.fluid.clip import _allow_pure_fp16_global_norm_clip
C
chengduo 已提交
25

W
WangXi 已提交
26 27
paddle.enable_static()

C
chengduo 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

def bow_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
56
        self.word_dict_len = 5147
C
chengduo 已提交
57
        self.BATCH_SIZE = 2
58 59
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
60
        self.clip_gradient = lambda x: None
61 62 63 64
        self.init()

    def init(self):
        pass
C
chengduo 已提交
65 66

    def get_places(self):
67
        places = [fluid.CPUPlace()]
C
chengduo 已提交
68
        if core.is_compiled_with_cuda():
69
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
70 71
        return places

72 73 74
    def check_clip_result(self, out, out_clip):
        pass

75
    def check_gradient_clip(self, place, dtype='float32'):
76 77
        prog = fluid.Program()
        startup_program = fluid.Program()
C
chengduo 已提交
78 79
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
80 81
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
82 83 84 85 86
            if dtype != 'float32':
                image_cast = paddle.cast(image, dtype)
                hidden = fluid.layers.fc(input=image_cast, size=32, act='relu')
            else:
                hidden = fluid.layers.fc(input=image, size=32, act='relu')
87
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
88 89 90 91 92 93 94 95 96 97

            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(cost)

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

98 99
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
100 101
        with fluid.program_guard(
                main_program=prog_clip, startup_program=startup_program):
102
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
103 104 105 106

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

107
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
108 109 110 111
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

112 113 114 115 116 117
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
        out_clip = exe.run(prog_clip,
                           feed=feeder.feed(data),
                           fetch_list=grad_clip_list)
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
118 119

    def check_sparse_gradient_clip(self, place):
120 121
        prog = fluid.Program()
        startup_program = fluid.Program()
C
chengduo 已提交
122 123
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
124 125 126
            data = fluid.data(
                name="words", shape=[-1, 1], dtype="int64", lod_level=1)
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
127
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
128

129
            self.backward_and_optimize(cost)
C
chengduo 已提交
130 131 132 133 134 135 136 137 138 139

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
        self.assertEqual((1, ), val.shape)
        self.assertFalse(np.isnan(val))

140
    def backward_and_optimize(self, cost):
141 142 143 144 145 146 147 148 149 150
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
151
            global_norm += np.sum(np.square(v))
152 153 154 155 156 157 158 159 160 161
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-5, atol=1e-8),
W
WangXi 已提交
162 163
                "gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}".
                format(u, v, u - v))
164

165
    # test whether the output is right when use 'set_gradient_clip'
166 167 168 169 170 171 172 173 174
    def test_old_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

175
    # test whether the output is right when use grad_clip
176 177 178 179
    def test_new_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)
C
chengduo 已提交
180

181 182 183
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

184
    # test whether the output is right when use grad_clip under float64
185 186 187 188 189 190 191 192
    def test_new_gradient_clip_fp64(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace(), "float64")

193 194 195
    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
        def backward_func(cost):
196
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
197
            fluid.clip.set_gradient_clip(clip)
198 199 200 201
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                                grad_clip=clip)
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
202 203 204 205
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
206 207 208
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

209 210
    # raise typeError
    def test_tpyeError(self):
211
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
212
        with self.assertRaises(TypeError):
213 214
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1,
                                                grad_clip="test")
215

216 217 218 219
    # if grad is None or not need clip
    def test_none_grad_fp32(self):
        ops = self._test_none_grad_helper("float32")
        self.assertListEqual(ops, [
220
            'squared_l2_norm', 'squared_l2_norm', 'sum', 'sqrt',
221 222 223 224 225 226 227 228
            'fill_constant', 'elementwise_max', 'elementwise_div',
            'elementwise_mul', 'elementwise_mul'
        ])

    def test_none_grad_fp16(self):
        ops = self._test_none_grad_helper("float16")
        self.assertListEqual(ops, [
            'square', 'reduce_sum', 'square', 'reduce_sum', 'sum', 'cast',
229 230
            'sqrt', 'fill_constant', 'elementwise_max', 'elementwise_div',
            'cast', 'elementwise_mul', 'cast', 'elementwise_mul'
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        ])

    def _test_none_grad_helper(self, dtype):
        prog = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(
                main_program=prog, startup_program=startup_program):
            clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
            x = fluid.default_main_program().global_block().create_parameter(
                name="x", shape=[2, 3], dtype=dtype)
            y = fluid.default_main_program().global_block().create_parameter(
                name="y", shape=[2, 3], dtype=dtype)

            # (x, None) should not be returned
            params_grads = [(x, None), (x, y), (y, x)]
            params_grads = clip(params_grads)
            self.assertTrue(
                len(params_grads) == 2,
                "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!"
            )

            ops = [op.type for op in x.block.ops]
        return ops

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

class TestGradientClipByNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-5, atol=1e-8),
                "gradient clip by norm has wrong results!")

270
    # test whether the output is right when use grad_clip
271
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
272 273 274 275 276
        def func(params_grads):
            clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
277 278 279 280
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
281
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
282
        x = fluid.default_main_program().global_block().create_parameter(
283
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
284
        y = fluid.default_main_program().global_block().create_parameter(
285
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
286 287 288 289 290 291

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
292
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!"
293 294 295
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
296
            "ClipGradByNorm: grad should not be clipped when filtered out!")
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313


class TestGradientClipByValue(TestGradientClip):
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-6, atol=1e-8),
                "gradient clip by value has wrong results!")

314
    # test whether the output is right when use grad_clip
315
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
316 317 318 319 320
        def func(params_grads):
            clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
            return clip(params_grads)

        self.clip_gradient = func
321 322 323 324
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
325
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
326
        x = fluid.default_main_program().global_block().create_parameter(
327
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
328
        y = fluid.default_main_program().global_block().create_parameter(
329
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
330 331 332 333 334 335

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
336
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!"
337 338 339
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
340
            "ClipGradByValue: grad should not be clipped when filtered out!")
341 342 343 344 345 346 347 348 349 350 351 352


class TestDygraphGradientClip(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
            linear = fluid.dygraph.Linear(5, 5)
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10).astype('float32')
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
353 354 355
                learning_rate=0.0,
                parameter_list=linear.parameters(),
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1))
356 357 358 359 360 361 362 363 364 365
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
366
            clip_norm=self.clip_norm)
367 368 369 370 371 372 373 374 375 376 377
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
            clip_norm=self.clip_norm)

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(
            np.array([2, 3]).astype("float32"), name="x")
        y = fluid.dygraph.to_variable(
            np.array([3, 4]).astype("float32"), name="y")
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
378
        opt, params_grads = optimizer.minimize(loss)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
            np.isclose(
                a=a, b=b, rtol=1e-6, atol=1e-8),
400
            "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
401 402 403 404 405 406
            % (a, b))


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
407
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
408 409 410 411 412 413 414

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
415
        opt, params_grads = optimizer.minimize(loss)
416 417 418 419 420 421 422 423 424 425 426 427 428
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
                np.isclose(
                    a=a, b=b, rtol=1e-6, atol=1e-8),
429
                "gradient clip by norm has wrong results, expetcd:%f, but received:%f"
430 431 432 433 434 435 436
                % (a, b))


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
437
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
438 439 440 441 442 443

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
444
        opt, params_grads = optimizer.minimize(loss)
445 446 447 448 449 450 451 452 453 454 455
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
            self.assertTrue(
                np.allclose(
                    a=u, b=v, rtol=1e-6, atol=1e-8),
                "gradient clip by value has wrong results!")

C
chengduo 已提交
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
class SimpleNet(paddle.nn.Layer):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.linear = paddle.nn.Linear(5, 5)
        self.batch_norm = paddle.nn.BatchNorm(5)

    def forward(self, x):
        x = self.linear(x)
        x = self.batch_norm(x)
        return x


class TestDygraphGradientClipFP16(unittest.TestCase):
    def test_gradient_clip(self):
        if fluid.core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                paddle.seed(10)
                model = SimpleNet()
                sgd_optimizer = paddle.optimizer.SGD(
                    learning_rate=0.0, parameters=model.parameters())
                model, sgd_optimizer = paddle.amp.decorate(
                    models=model, optimizers=sgd_optimizer, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                inputs = fluid.layers.uniform_random(
                    [1, 5], min=-10, max=10).astype('float32')
                with paddle.amp.auto_cast(level='O2'):
                    out = model(fluid.dygraph.to_variable(inputs))
                    loss = fluid.layers.reduce_mean(out)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.unscale_(sgd_optimizer)
                # before clip
                params_grads = []
                for param in model.parameters():
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        params_grads.append((param, param._grad_ivar()))
                _, grads = zip(*params_grads)
                # clip grads
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.8)
                params_grads = clip(params_grads)
                _, grads_clip = zip(*params_grads)
                # param update                      
                scaler.step(sgd_optimizer)
                scaler.update()

                global_norm = 0
                for u in grads:
                    u = u.numpy()
                    global_norm += np.sum(np.power(u, 2))
                global_norm = np.sqrt(global_norm)
                global_norm_clip = 0
                for v in grads_clip:
                    v = v.numpy()
                    global_norm_clip += np.sum(np.power(v, 2))
                global_norm_clip = np.sqrt(global_norm_clip)

                a = np.minimum(global_norm, 0.8)
                b = global_norm_clip
                self.assertTrue(
                    np.isclose(
                        a=a, b=b, rtol=1e-3, atol=1e-8),
520
                    "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
                    % (a, b))


class TestDygraphGradientClipFP64(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10).astype('float64')
            linear = fluid.dygraph.Linear(5, 5, dtype="float64")
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            # before clip
            params_grads = []
            for param in linear.parameters():
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    params_grads.append((param, param._grad_ivar()))
            _, grads = zip(*params_grads)
            # clip grads
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.1)
            params_grads = clip(params_grads)
            _, grads_clip = zip(*params_grads)

            global_norm = 0
            for u in grads:
                u = u.numpy()
                global_norm += np.sum(np.power(u, 2))
            global_norm = np.sqrt(global_norm)

            global_norm_clip = 0
            for v in grads_clip:
                v = v.numpy()
                print(v)
                global_norm_clip += np.sum(np.power(v, 2))
            global_norm_clip = np.sqrt(global_norm_clip)
            print(global_norm_clip)

            a = np.minimum(global_norm, 0.1)
            b = global_norm_clip

            self.assertTrue(
                np.isclose(
                    a=a, b=b, rtol=1e-6, atol=1e-8),
566
                "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
567 568 569
                % (a, b))


570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
class TestPureFP16ClipGradByGlobalNorm(unittest.TestCase):
    def check_main(self, expected_has_cast_op):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            names = ["p0", "p1"]
            shapes = [[2, 3], [4, 5]]

            param_and_grads = []
            main_block = main_prog.global_block()
            for name, shape in zip(names, shapes):
                p = main_block.create_parameter(
                    name=name, shape=shape, dtype='float16')
                g = main_block.create_parameter(
                    name=p.name + '@GRAD', shape=p.shape, dtype=p.dtype)
                param_and_grads.append((p, g))

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            clip(param_and_grads)
            actual_has_cast = any(op.type == 'cast' for op in main_block.ops)
            self.assertEqual(actual_has_cast, expected_has_cast_op)

    def test_main(self):
        self.check_main(True)
        _allow_pure_fp16_global_norm_clip(True)
        self.check_main(False)
        _allow_pure_fp16_global_norm_clip(False)
        self.check_main(True)


C
chengduo 已提交
600 601
if __name__ == '__main__':
    unittest.main()