test_gradient_clip.py 23.7 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15 16 17 18 19
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
20
from fake_reader import fake_imdb_reader
21
from paddle.fluid.clip import _allow_pure_fp16_global_norm_clip
C
chengduo 已提交
22

W
WangXi 已提交
23 24
paddle.enable_static()

C
chengduo 已提交
25

26 27 28
def bow_net(
    data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2
):
C
chengduo 已提交
29 30 31 32 33
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
34 35 36
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim]
    )
C
chengduo 已提交
37
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
38
    bow_tanh = paddle.tanh(bow)
C
chengduo 已提交
39 40 41 42
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
43
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
44 45 46 47 48 49

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
50
        self.word_dict_len = 5147
C
chengduo 已提交
51
        self.BATCH_SIZE = 2
52 53
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
54
        self.clip_gradient = lambda x: None
55 56 57 58
        self.init()

    def init(self):
        pass
C
chengduo 已提交
59 60

    def get_places(self):
61
        places = [fluid.CPUPlace()]
C
chengduo 已提交
62
        if core.is_compiled_with_cuda():
63
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
64 65
        return places

66 67 68
    def check_clip_result(self, out, out_clip):
        pass

69
    def check_gradient_clip(self, place, dtype='float32'):
70 71
        prog = fluid.Program()
        startup_program = fluid.Program()
72 73 74
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
75 76
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
77 78 79 80 81
            if dtype != 'float32':
                image_cast = paddle.cast(image, dtype)
                hidden = fluid.layers.fc(input=image_cast, size=32, act='relu')
            else:
                hidden = fluid.layers.fc(input=image, size=32, act='relu')
82
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
83 84

            cost = fluid.layers.cross_entropy(input=predict, label=label)
85
            avg_cost = paddle.mean(cost)
C
chengduo 已提交
86 87 88 89 90 91 92

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

93 94
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
95 96 97
        with fluid.program_guard(
            main_program=prog_clip, startup_program=startup_program
        ):
98
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
99 100 101 102

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

103
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
104 105 106 107
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

108 109
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
110 111 112
        out_clip = exe.run(
            prog_clip, feed=feeder.feed(data), fetch_list=grad_clip_list
        )
113
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
114 115

    def check_sparse_gradient_clip(self, place):
116 117
        prog = fluid.Program()
        startup_program = fluid.Program()
118 119 120 121 122 123
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
            data = fluid.data(
                name="words", shape=[-1, 1], dtype="int64", lod_level=1
            )
124
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
125
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
126

127
            self.backward_and_optimize(cost)
C
chengduo 已提交
128 129 130 131 132 133 134

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
135
        self.assertEqual((1,), val.shape)
C
chengduo 已提交
136 137
        self.assertFalse(np.isnan(val))

138
    def backward_and_optimize(self, cost):
139 140 141 142 143 144 145 146 147 148
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
149
            global_norm += np.sum(np.square(v))
150 151 152 153 154 155 156
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
157 158 159 160 161
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
162 163 164 165
                err_msg='gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}'.format(
                    u, v, u - v
                ),
            )
166

167
    # test whether the output is right when use 'set_gradient_clip'
168 169 170 171 172 173 174 175 176
    def test_old_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

177
    # test whether the output is right when use grad_clip
178 179 180 181
    def test_new_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)
C
chengduo 已提交
182

183 184 185
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

186
    # test whether the output is right when use grad_clip under float64
187 188 189 190 191 192 193 194
    def test_new_gradient_clip_fp64(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace(), "float64")

195 196 197
    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
        def backward_func(cost):
198
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
199
            fluid.clip.set_gradient_clip(clip)
200 201 202
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.01, grad_clip=clip
            )
203 204
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
205 206 207 208
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
209 210 211
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

212 213
    # raise typeError
    def test_tpyeError(self):
214
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
215
        with self.assertRaises(TypeError):
216 217 218
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.1, grad_clip="test"
            )
219

220 221 222
    # if grad is None or not need clip
    def test_none_grad_fp32(self):
        ops = self._test_none_grad_helper("float32")
223 224 225 226 227 228 229 230 231 232 233 234 235 236
        self.assertListEqual(
            ops,
            [
                'squared_l2_norm',
                'squared_l2_norm',
                'sum',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'elementwise_mul',
                'elementwise_mul',
            ],
        )
237 238 239

    def test_none_grad_fp16(self):
        ops = self._test_none_grad_helper("float16")
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        self.assertListEqual(
            ops,
            [
                'square',
                'reduce_sum',
                'square',
                'reduce_sum',
                'sum',
                'cast',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'cast',
                'elementwise_mul',
                'cast',
                'elementwise_mul',
            ],
        )
259 260 261 262

    def _test_none_grad_helper(self, dtype):
        prog = fluid.Program()
        startup_program = fluid.Program()
263 264 265
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
266
            clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
267 268 269 270 271 272 273 274 275 276
            x = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="x", shape=[2, 3], dtype=dtype)
            )
            y = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="y", shape=[2, 3], dtype=dtype)
            )
277 278 279 280 281 282

            # (x, None) should not be returned
            params_grads = [(x, None), (x, y), (y, x)]
            params_grads = clip(params_grads)
            self.assertTrue(
                len(params_grads) == 2,
283
                "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!",
284 285 286 287 288
            )

            ops = [op.type for op in x.block.ops]
        return ops

289 290 291 292 293 294 295 296 297 298

class TestGradientClipByNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
299 300 301 302 303
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
304 305
                err_msg='gradient clip by norm has wrong results!',
            )
306

307
    # test whether the output is right when use grad_clip
308
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
309 310 311 312 313
        def func(params_grads):
            clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
314 315 316 317
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
318
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
319 320 321 322 323 324 325 326 327 328 329 330 331 332
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
333 334 335 336 337 338

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
339
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!",
340 341 342
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
343 344
            "ClipGradByNorm: grad should not be clipped when filtered out!",
        )
345 346 347 348 349 350 351 352 353 354 355 356


class TestGradientClipByValue(TestGradientClip):
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
357 358 359 360 361
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
362 363
                err_msg='gradient clip by value has wrong results!',
            )
364

365
    # test whether the output is right when use grad_clip
366
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
367 368 369 370 371
        def func(params_grads):
            clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
            return clip(params_grads)

        self.clip_gradient = func
372 373 374 375
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
376
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
377 378 379 380 381 382 383 384 385 386 387 388 389 390
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
391 392 393 394 395 396

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
397
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!",
398 399 400
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
401 402
            "ClipGradByValue: grad should not be clipped when filtered out!",
        )
403 404 405 406 407 408


class TestDygraphGradientClip(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
            linear = fluid.dygraph.Linear(5, 5)
409 410 411
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10
            ).astype('float32')
412 413 414 415
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
416 417
                learning_rate=0.0,
                parameter_list=linear.parameters(),
418 419
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1),
            )
420 421 422 423 424 425 426 427 428 429
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
430 431
            clip_norm=self.clip_norm
        )
432
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
433 434
            clip_norm=self.clip_norm
        )
435 436 437

    def check_clip_result(self, loss, optimizer):
        # if grad is None
438 439 440 441 442 443
        x = fluid.dygraph.to_variable(
            np.array([2, 3]).astype("float32"), name="x"
        )
        y = fluid.dygraph.to_variable(
            np.array([3, 4]).astype("float32"), name="y"
        )
444 445
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
446
        opt, params_grads = optimizer.minimize(loss)
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
466
            np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
467
            "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
468 469
            % (a, b),
        )
470 471 472 473 474


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
475
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
476 477 478 479 480 481 482

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
483
        opt, params_grads = optimizer.minimize(loss)
484 485 486 487 488 489 490 491 492 493 494
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
495
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
496
                "gradient clip by norm has wrong results, expetcd:%f, but received:%f"
497 498
                % (a, b),
            )
499 500 501 502 503 504


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
505
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
506 507 508 509 510 511

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
512
        opt, params_grads = optimizer.minimize(loss)
513 514 515 516 517 518
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
519 520 521 522 523
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
524 525
                err_msg='gradient clip by value has wrong results!',
            )
526

C
chengduo 已提交
527

528 529
class SimpleNet(paddle.nn.Layer):
    def __init__(self):
530
        super().__init__()
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        self.linear = paddle.nn.Linear(5, 5)
        self.batch_norm = paddle.nn.BatchNorm(5)

    def forward(self, x):
        x = self.linear(x)
        x = self.batch_norm(x)
        return x


class TestDygraphGradientClipFP16(unittest.TestCase):
    def test_gradient_clip(self):
        if fluid.core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                paddle.seed(10)
                model = SimpleNet()
                sgd_optimizer = paddle.optimizer.SGD(
547 548
                    learning_rate=0.0, parameters=model.parameters()
                )
549
                model, sgd_optimizer = paddle.amp.decorate(
550 551
                    models=model, optimizers=sgd_optimizer, level='O2'
                )
552
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
553 554 555
                inputs = fluid.layers.uniform_random(
                    [1, 5], min=-10, max=10
                ).astype('float32')
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
                with paddle.amp.auto_cast(level='O2'):
                    out = model(fluid.dygraph.to_variable(inputs))
                    loss = fluid.layers.reduce_mean(out)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.unscale_(sgd_optimizer)
                # before clip
                params_grads = []
                for param in model.parameters():
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        params_grads.append((param, param._grad_ivar()))
                _, grads = zip(*params_grads)
                # clip grads
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.8)
                params_grads = clip(params_grads)
                _, grads_clip = zip(*params_grads)
574
                # param update
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
                scaler.step(sgd_optimizer)
                scaler.update()

                global_norm = 0
                for u in grads:
                    u = u.numpy()
                    global_norm += np.sum(np.power(u, 2))
                global_norm = np.sqrt(global_norm)
                global_norm_clip = 0
                for v in grads_clip:
                    v = v.numpy()
                    global_norm_clip += np.sum(np.power(v, 2))
                global_norm_clip = np.sqrt(global_norm_clip)

                a = np.minimum(global_norm, 0.8)
                b = global_norm_clip
                self.assertTrue(
592
                    np.isclose(a=a, b=b, rtol=1e-3, atol=1e-8),
593
                    "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
594 595
                    % (a, b),
                )
596 597 598 599 600


class TestDygraphGradientClipFP64(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
601 602 603
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10
            ).astype('float64')
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
            linear = fluid.dygraph.Linear(5, 5, dtype="float64")
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            # before clip
            params_grads = []
            for param in linear.parameters():
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    params_grads.append((param, param._grad_ivar()))
            _, grads = zip(*params_grads)
            # clip grads
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.1)
            params_grads = clip(params_grads)
            _, grads_clip = zip(*params_grads)

            global_norm = 0
            for u in grads:
                u = u.numpy()
                global_norm += np.sum(np.power(u, 2))
            global_norm = np.sqrt(global_norm)

            global_norm_clip = 0
            for v in grads_clip:
                v = v.numpy()
                print(v)
                global_norm_clip += np.sum(np.power(v, 2))
            global_norm_clip = np.sqrt(global_norm_clip)
            print(global_norm_clip)

            a = np.minimum(global_norm, 0.1)
            b = global_norm_clip

            self.assertTrue(
639
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
640
                "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
641 642
                % (a, b),
            )
643 644


645 646 647 648 649 650 651 652 653 654 655
class TestPureFP16ClipGradByGlobalNorm(unittest.TestCase):
    def check_main(self, expected_has_cast_op):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            names = ["p0", "p1"]
            shapes = [[2, 3], [4, 5]]

            param_and_grads = []
            main_block = main_prog.global_block()
            for name, shape in zip(names, shapes):
656 657 658 659 660 661
                p = main_block.create_parameter(
                    name=name, shape=shape, dtype='float16'
                )
                g = main_block.create_parameter(
                    name=p.name + '@GRAD', shape=p.shape, dtype=p.dtype
                )
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
                param_and_grads.append((p, g))

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            clip(param_and_grads)
            actual_has_cast = any(op.type == 'cast' for op in main_block.ops)
            self.assertEqual(actual_has_cast, expected_has_cast_op)

    def test_main(self):
        self.check_main(True)
        _allow_pure_fp16_global_norm_clip(True)
        self.check_main(False)
        _allow_pure_fp16_global_norm_clip(False)
        self.check_main(True)


C
chengduo 已提交
677 678
if __name__ == '__main__':
    unittest.main()