layers.py 200.9 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
G
guosheng 已提交
79
    'row_l2_norm_layer',
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
132
    'sub_nested_seq_layer',
133
    'clip_layer',
134
    'slice_projection',
135
    'seq_slice_layer',
136
    'kmax_sequence_score_layer',
Q
qijun 已提交
137
]
Z
zhangjinchao01 已提交
138 139 140 141 142 143 144


class LayerType(object):
    """
    Layer type enumerations.
    """

145 146 147 148 149 150 151 152
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
153
    POOLING_AVG = 'average'
154
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
155
    COST = 'cost'
156 157
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
158
    HSIGMOID = 'hsigmoid'
159 160 161 162 163 164
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
165 166 167
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
168
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
169 170 171 172
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
173
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
174 175 176 177 178 179 180

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
181
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
182 183 184
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
185
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
186
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
187
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
188 189 190 191 192 193 194 195 196 197 198

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
199
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
200
    BLOCK_EXPAND = "blockexpand"
201
    MAXOUT = "maxout"
Q
qijun 已提交
202
    SPP_LAYER = "spp"
D
dangqingqing 已提交
203
    PAD_LAYER = "pad"
W
wwhu 已提交
204
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
205
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
206 207 208

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
209 210
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
211 212 213 214 215

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
216
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
217

218 219 220 221 222 223 224 225 226 227 228
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
229
    CROP_LAYER = 'crop'
C
caoying03 已提交
230
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
231
    CLIP_LAYER = 'clip'
232
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
233

234 235
    KMAX_SEQ_SCORE = 'kmax_seq_score'

Z
zhangjinchao01 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
256
    """
L
Luo Tao 已提交
257
    PaddlePaddle supports three sequence types:
258 259 260

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
261 262
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
263

L
Luo Tao 已提交
264
    Accordingly, AggregateLevel supports two modes:
265

L
Luo Tao 已提交
266
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
267
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
268 269
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
270
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
271 272 273
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
274 275
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
276 277 278
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
301
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
302 303
    """

Q
qijun 已提交
304 305 306 307 308 309 310 311 312
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
313
                 reverse=None):
Z
zhangjinchao01 已提交
314 315
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
316
        assert size is not None
Z
zhangjinchao01 已提交
317 318
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
319
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
320
        self.layer_type = layer_type
321 322
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
323 324 325 326 327 328 329 330
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
331
        self.reverse = reverse
Z
zhangjinchao01 已提交
332

333 334 335 336 337 338 339 340
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
341 342 343

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
344
DEVICE = 'device'
Z
zhangjinchao01 已提交
345 346 347


def layer_support(*attrs):
348
    attrs_list = list(attrs)
349
    attrs_list.append(DEVICE)
Q
qijun 已提交
350

Z
zhangjinchao01 已提交
351 352 353
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
354
            for attr in attrs_list:
Z
zhangjinchao01 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
371 372 373 374 375
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
415 416
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
417 418 419 420
    proj.origin = input
    return proj


421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
451 452
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
453 454 455 456
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
496 497
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
498 499 500 501
    proj.origin = input
    return proj


502
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
533
    :type input: LayerOutput
Z
zhangjinchao01 已提交
534 535
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
536
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
537 538 539 540 541 542
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
543 544
        if size is None:
            size = input.size - offset
Q
qijun 已提交
545
        proj = IdentityOffsetProjection(
546
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
547 548 549 550
        proj.origin = input
    return proj


551 552
def slice_projection(input, slices):
    """
553 554
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
555 556

    .. math::
557
       output = [input.slices()]
558 559 560 561 562 563 564 565 566 567 568 569 570 571

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
572
    :type slices: pair of int
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
612
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
613 614 615 616
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
617
@wrap_param_attr_default()
618
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
619
    """
620
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

634 635 636 637 638 639 640
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
641 642
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
643
    proj.origin = input
644
    return proj
Z
zhangjinchao01 已提交
645

646 647

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
648 649
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
650

Z
zhangjinchao01 已提交
651
    .. math::
L
Luo Tao 已提交
652
       out.row[i] += scale * (a.row[i] .* b.row[i])
653

Z
zhangjinchao01 已提交
654 655
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
656

Z
zhangjinchao01 已提交
657
    The example usage is:
658

Z
zhangjinchao01 已提交
659
    .. code-block:: python
660

L
Luo Tao 已提交
661
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
662

663 664 665 666
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
667 668
    :param scale: config scalar, default value is one.
    :type scale: float
669 670
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
671
    """
672 673 674
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
675
    a = kwargs.get('x', a)  # For Backward capacity.
676 677 678 679 680 681
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
682
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
683
    op.origin = [a, b]
684
    return op
Z
zhangjinchao01 已提交
685

686

Z
zhangjinchao01 已提交
687
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
688 689 690
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
727 728 729 730 731 732
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
746
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
763 764 765 766 767 768 769
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
770 771 772 773 774
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

775
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
784
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
785
            self.inputs.append(other)
786 787 788 789
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
790 791 792 793 794 795 796 797
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

798
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
799 800
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
801
        assert len(self.inputs) != 0
802
        ml = MixedLayer(
Z
zhangjinchao01 已提交
803 804 805 806 807
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
808
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
809 810 811
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
812
        self.finalized = True
Z
zhangjinchao01 已提交
813 814 815 816 817 818


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
819 820 821 822 823
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
868 869 870 871 872 873
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
874
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
875 876 877 878 879 880 881 882
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
883
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
884 885 886 887 888 889 890
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
891
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
892 893 894 895 896

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
897
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
898
    :type height: int|None
L
Luo Tao 已提交
899
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
900
    :type width: int|None
Z
zhangjinchao01 已提交
901 902
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
903
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
904 905
    :rtype: LayerOutput
    """
Q
qijun 已提交
906 907 908 909
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
910 911
        height=height,
        width=width,
Q
qijun 已提交
912
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
913 914 915 916 917 918

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
919
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
935
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
936 937
    :rtype: LayerOutput
    """
Q
qijun 已提交
938 939 940 941 942 943
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
944 945 946 947 948 949 950 951 952
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
953 954 955 956 957 958 959
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
960 961 962 963 964 965 966 967 968 969 970 971
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
972
    which is equal to:
Z
zhangjinchao01 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
995
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
996 997 998 999
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1000
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1001 1002
        param_attr = [param_attr]
    else:
1003
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1004 1005 1006 1007
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1008
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1009 1010

    Layer(
Q
qijun 已提交
1011 1012 1013
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1014 1015 1016 1017 1018
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1019 1020 1021
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1022

1023

1024
@wrap_name_default("print")
1025
def printer_layer(input, format=None, name=None):
1026 1027
    """
    Print the output value of input layers. This layer is useful for debugging.
1028 1029 1030 1031 1032

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1033
    :return: LayerOutput
1034
    """
1035 1036 1037 1038 1039
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1040 1041 1042

    Layer(
        name=name,
1043
        format=format,
1044
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1045
        inputs=[l.name for l in input], )
1046
    # this layer don't return anything, can not be input of other layer.
1047

X
xuwei06 已提交
1048 1049 1050 1051 1052 1053 1054
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1055

Y
yuan 已提交
1056
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1057
def priorbox_layer(input,
G
gaoyuan 已提交
1058
                   image,
G
gaoyuan 已提交
1059 1060 1061 1062 1063
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1064 1065 1066 1067 1068 1069 1070
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1071 1072
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1084
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1085 1086 1087
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1088
        inputs=[input.name, image.name],
Y
yuan 已提交
1089 1090 1091 1092 1093 1094
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1095 1096
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1097
        parents=[input, image],
G
gaoyuan 已提交
1098 1099 1100
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1118 1119
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1120
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1121
    :type input_conf: LayerOutput | List of LayerOutput
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1143
    input_loc_num = len(input_loc)
1144 1145 1146 1147 1148 1149

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1150
    input_conf_num = len(input_conf)
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1192 1193
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1194
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1195
    :type input_conf: LayerOutput | List of LayerOutput.
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1217
    input_loc_num = len(input_loc)
1218 1219 1220 1221 1222 1223

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1224 1225
    input_conf_num = len(input_conf)

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1254 1255
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1256 1257 1258 1259 1260
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1261

G
gaoyuan 已提交
1262 1263 1264 1265 1266 1267 1268 1269
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1270
    assert input.num_filters is not None
G
gaoyuan 已提交
1271 1272
    Layer(
        name=name,
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1286 1287
    return LayerOutput(
        name,
1288
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1289 1290 1291 1292 1293
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1294 1295 1296 1297
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1298 1299 1300 1301
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1302
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1303
                  stride=-1,
Z
zhangjinchao01 已提交
1304 1305 1306 1307
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1308 1309
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1310 1311 1312
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1313
    operation. Note that for sequence with sub-sequence, the default value
1314 1315
    of stride is -1.

Z
zhangjinchao01 已提交
1316 1317 1318 1319 1320 1321
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1322
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1323

L
Luo Tao 已提交
1324 1325
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1326 1327 1328 1329 1330 1331 1332 1333
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1334
    :param stride: The step size between successive pooling regions.
1335
    :type stride: Int
Z
zhangjinchao01 已提交
1336 1337 1338 1339
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1340
    :return: LayerOutput object.
Y
Yu Yang 已提交
1341
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1342 1343
    """
    extra_dict = dict()
1344
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1345 1346
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1347 1348 1349 1350
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1351 1352
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1353 1354 1355
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1356 1357 1358 1359 1360 1361
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1362
        stride=stride,
Q
qijun 已提交
1363
        **extra_dict)
Z
zhangjinchao01 已提交
1364

Q
qijun 已提交
1365 1366
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1367

Q
qijun 已提交
1368

Z
zhangjinchao01 已提交
1369 1370
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1371
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1372 1373
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1374
@layer_support()
Q
qijun 已提交
1375 1376
def lstmemory(input,
              name=None,
1377
              size=None,
Q
qijun 已提交
1378 1379 1380 1381 1382 1383
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1384 1385 1386 1387 1388 1389 1390 1391
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1392
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1393

L
luotao02 已提交
1394
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1395

L
luotao02 已提交
1396
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1397

L
luotao02 已提交
1398
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1399

L
luotao02 已提交
1400
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1401 1402


C
caoying03 已提交
1403
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1404
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1405 1406 1407 1408
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1409

C
caoying03 已提交
1410
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1411 1412
    to config a simple plain lstm layer.

C
caoying03 已提交
1413 1414 1415 1416
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1417 1418 1419 1420 1421

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1422 1423
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1442
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1443 1444 1445 1446 1447 1448
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1449
    assert input.size is not None and input.size % 4 == 0
1450

1451 1452 1453 1454 1455
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1456 1457 1458
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1459

Q
qijun 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1470

Q
qijun 已提交
1471 1472 1473 1474 1475
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1476

Z
zhangjinchao01 已提交
1477 1478 1479

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1480
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1481 1482
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1483
@layer_support()
Q
qijun 已提交
1484
def grumemory(input,
1485
              size=None,
Q
qijun 已提交
1486 1487 1488 1489 1490 1491
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1513 1514
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1515 1516 1517 1518 1519

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1520 1521 1522
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1523 1524 1525 1526 1527

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1528
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1529
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1530 1531 1532
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1533

C
caoying03 已提交
1534 1535 1536
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1548 1549
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1550
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1566
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1567 1568 1569 1570
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1571 1572 1573 1574 1575 1576
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1577 1578 1579
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1580

Q
qijun 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1590

Q
qijun 已提交
1591 1592 1593 1594 1595
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1596

Z
zhangjinchao01 已提交
1597 1598 1599

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1600 1601
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1602
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1603
             stride=-1,
Z
zhangjinchao01 已提交
1604 1605 1606 1607
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1608 1609 1610
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1611
    of stride is -1.
1612

L
Luo Tao 已提交
1613 1614 1615 1616 1617 1618
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1619 1620 1621 1622 1623
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1624
    :param stride: The step size between successive pooling regions.
1625
    :type stride: Int
Z
zhangjinchao01 已提交
1626 1627
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1628
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1629 1630
    :rtype: LayerOutput
    """
1631 1632 1633 1634 1635 1636
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1637
    if agg_level == AggregateLevel.TO_SEQUENCE:
1638 1639
        assert stride == -1

Z
zhangjinchao01 已提交
1640 1641 1642 1643 1644
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1645
        stride=stride,
Q
qijun 已提交
1646 1647 1648 1649 1650 1651
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1652 1653 1654 1655


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1656 1657
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1658
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1659
              stride=-1,
Z
zhangjinchao01 已提交
1660 1661 1662 1663
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1664 1665 1666
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1667
    of stride is -1.
1668

L
Luo Tao 已提交
1669 1670 1671 1672 1673 1674
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1675 1676 1677 1678 1679
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1680
    :param stride: The step size between successive pooling regions.
1681
    :type stride: Int
Z
zhangjinchao01 已提交
1682 1683
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1684
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1685 1686
    :rtype: LayerOutput
    """
1687 1688 1689 1690 1691 1692 1693

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1694
    if agg_level == AggregateLevel.TO_SEQUENCE:
1695 1696
        assert stride == -1

Z
zhangjinchao01 已提交
1697 1698 1699 1700 1701
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1702
        stride=stride,
Q
qijun 已提交
1703 1704 1705 1706 1707 1708
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1709 1710 1711


class ExpandLevel(object):
1712 1713 1714 1715 1716
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1717 1718
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1719 1720
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1721 1722
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1723 1724
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1725 1726
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1727 1728
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1729

1730

Z
zhangjinchao01 已提交
1731 1732
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1733 1734
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1735 1736
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1737
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1749
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1764
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1774 1775 1776 1777 1778 1779
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1780 1781


X
xuwei06 已提交
1782
@wrap_name_default()
X
xuwei06 已提交
1783
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1784
@layer_support()
X
xuwei06 已提交
1785 1786 1787
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1788
                 act=None,
X
xuwei06 已提交
1789 1790
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1791
    """
X
xuwei06 已提交
1792
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1793

X
xuwei06 已提交
1794
    If as_row_vector:
X
xuwei06 已提交
1795
    .. math::
X
xuwei06 已提交
1796 1797 1798 1799 1800
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1801 1802 1803 1804 1805

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1806
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1807 1808 1809 1810 1811 1812

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1813 1814 1815 1816 1817 1818
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1819 1820
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1831
        active_type=act.name,
X
xuwei06 已提交
1832
        num_filters=num_repeats,
X
xuwei06 已提交
1833
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1834
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1835 1836 1837 1838 1839
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1840
        activation=act,
Q
qijun 已提交
1841 1842
        parents=[input])

X
xuwei06 已提交
1843

1844 1845 1846
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1847
@layer_support(ERROR_CLIPPING, DROPOUT)
1848 1849 1850 1851 1852 1853 1854 1855
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1856
    the dimension of each instance is M, and the input reshape_size is N, then the
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1927
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1928 1929
    :rtype: LayerOutput
    """
1930
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1931
    assert len(input) == 2
1932 1933 1934 1935 1936 1937 1938
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1939 1940 1941 1942
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1943 1944 1945 1946 1947 1948
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1949 1950


L
liaogang 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1967
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1968

L
liaogang 已提交
1969
    :param   input:        A input layer.
L
liaogang 已提交
1970
    :type    input:        LayerOutput.
L
liaogang 已提交
1971
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1972
    :type    out_size_x:   int|None
L
liaogang 已提交
1973
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1974
    :type    out_size_y:   int|None
L
liaogang 已提交
1975
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1976
    :type    name:         None|basestring
L
liaogang 已提交
1977
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1978 1979 1980 1981 1982 1983 1984
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1985
    assert input.num_filters is not None
L
liaogang 已提交
1986
    num_channels = input.num_filters
Q
qijun 已提交
1987 1988 1989 1990 1991 1992 1993
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1994
                channels=num_channels)),
Q
qijun 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2004

Z
zhangjinchao01 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2032
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2033 2034
    :rtype: LayerOutput
    """
2035 2036 2037
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2038 2039 2040
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2041
        inputs=[weight.name, input.name],
Q
qijun 已提交
2042 2043 2044
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2045 2046 2047 2048 2049 2050


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2051
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2052 2053

    .. math::
2054
       y  = w x
Z
zhangjinchao01 已提交
2055

2056 2057 2058 2059 2060
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2076
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2077 2078
    :rtype: LayerOutput
    """
2079 2080 2081
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2082 2083 2084 2085
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2086 2087 2088
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2089 2090 2091 2092 2093 2094


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2095
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2114
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2115 2116 2117 2118 2119 2120
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2121 2122 2123
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2124 2125


2126 2127
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2128
def rotate_layer(input, height, width, name=None, layer_attr=None):
2129
    """
H
Haonan 已提交
2130 2131
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2132 2133

    .. math::
H
Haonan 已提交
2134
       y(j,i,:) = x(M-i-1,j,:)
2135

H
Haonan 已提交
2136
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2137 2138 2139 2140 2141 2142

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2143 2144
                          height=100,
                          width=100)
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2158 2159 2160
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2161
        width=width,
H
Haonan 已提交
2162 2163 2164 2165 2166 2167 2168 2169
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2170 2171


Z
zhangjinchao01 已提交
2172 2173
@wrap_name_default()
@layer_support()
2174
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2175 2176 2177 2178
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2179
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2180 2181 2182 2183 2184
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2185

2186 2187
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2188

L
Luo Tao 已提交
2189 2190 2191 2192 2193 2194
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2207
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2208 2209
    :rtype: LayerOutput
    """
2210
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2211 2212 2213 2214 2215 2216
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2217
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2218
    else:
2219 2220
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2221 2222 2223 2224 2225 2226
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2227
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2228
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2229

2230

Z
zhangjinchao01 已提交
2231 2232
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2233
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2234
@layer_support()
Q
qijun 已提交
2235 2236
def hsigmoid(input,
             label,
2237
             num_classes=None,
Q
qijun 已提交
2238 2239 2240 2241
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2253
                        label=data_layer)
Z
zhangjinchao01 已提交
2254 2255 2256 2257 2258 2259 2260

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2261
    :type num_classes: int|None
L
luotao02 已提交
2262 2263
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2264 2265 2266
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2267 2268
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2269 2270
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2271
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2272 2273 2274 2275
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2276 2277 2278 2279 2280 2281 2282 2283 2284
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2285 2286 2287
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2288 2289 2290 2291 2292
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2293 2294
    ipts_for_layer = []
    parents = []
2295
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2296
        assert isinstance(each_input, LayerOutput)
2297
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2298 2299 2300 2301
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2302
    l = Layer(
Z
zhangjinchao01 已提交
2303 2304 2305 2306 2307
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2308 2309 2310
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2311

2312

Z
zhangjinchao01 已提交
2313 2314 2315 2316 2317
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2334 2335
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2336
    """
2337
    Convolution layer for image. Paddle can support both square and non-square
2338
    input currently.
Z
zhangjinchao01 已提交
2339 2340 2341 2342

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2343

2344
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2345
    and non-square input currently.
2346

X
xuwei06 已提交
2347
    The details of convolution transpose layer,
2348 2349 2350
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2351 2352 2353 2354
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2355 2356 2357
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2358
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2359 2360
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2361

L
Luo Tao 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2372 2373 2374 2375
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2376 2377 2378
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2379 2380 2381
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2382
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2383 2384 2385 2386 2387
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2388 2389 2390
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2391 2392
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2393 2394 2395
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2410 2411
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2412
    :param layer_type: specify the layer_type, default is None. If trans=True,
2413 2414
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2415
                       "cudnn_conv"
2416
    :type layer_type: String
D
dangqingqing 已提交
2417
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2418 2419 2420 2421 2422
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2423

Z
zhangjinchao01 已提交
2424
    if filter_size_y is None:
2425 2426 2427 2428 2429 2430
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2431
    if stride_y is None:
2432 2433 2434 2435 2436 2437
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2438
    if padding_y is None:
2439 2440 2441 2442 2443 2444 2445 2446
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2447
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2448 2449 2450 2451
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2452

2453 2454
    if layer_type:
        if trans:
2455
            assert layer_type in ["exconvt", "cudnn_convt"]
2456 2457 2458 2459 2460
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2461

X
xuwei06 已提交
2462
    l = Layer(
Z
zhangjinchao01 已提交
2463
        name=name,
Q
qijun 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2476 2477 2478 2479
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2480
        type=lt,
Q
qijun 已提交
2481 2482 2483 2484 2485 2486 2487 2488
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2489 2490 2491 2492


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2503 2504
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2505 2506 2507 2508 2509 2510 2511
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2540
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2541
    :type padding: int
2542 2543
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2544 2545 2546 2547
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2548
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2549
    :type pool_size: int
2550 2551
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2552 2553
    :param num_channels: number of input channel.
    :type num_channels: int
2554
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2555 2556
                      MaxPooling.
    :type pool_type: BasePoolingType
2557
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2558
    :type stride: int
2559 2560
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2561 2562
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2563 2564 2565 2566
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2567 2568
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2579
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2580
        if (
Y
Yu Yang 已提交
2581
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2582
        else pool_type.name
2583 2584 2585 2586 2587

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2588
    l = Layer(
Z
zhangjinchao01 已提交
2589 2590
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2603
                    padding_y=padding_y))
Q
qijun 已提交
2604
        ],
2605
        ceil_mode=ceil_mode,
Q
qijun 已提交
2606 2607 2608 2609 2610 2611 2612
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2613 2614


Q
qijun 已提交
2615 2616
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2617 2618 2619 2620 2621 2622
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2623 2624 2625 2626 2627
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2628 2629 2630 2631
    The example usage is:

    ..  code-block:: python

2632 2633 2634
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2635 2636
                        pool_type=MaxPooling())

Q
qijun 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2665
    l = Layer(
Q
qijun 已提交
2666 2667
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2668 2669 2670 2671 2672
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2673
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2685 2686 2687 2688
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2689
    l = Layer(
Q
qijun 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2709 2710 2711 2712


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2713 2714 2715 2716 2717 2718
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2719
                      layer_attr=None):
Z
zhangjinchao01 已提交
2720
    """
2721
    Response normalization across feature maps.
D
dangqingqing 已提交
2722 2723
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2724

L
Luo Tao 已提交
2725 2726 2727
    The example usage is:

    ..  code-block:: python
2728

L
Luo Tao 已提交
2729 2730
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2731
    :param name: layer name.
D
dangqingqing 已提交
2732
    :type name: None|basestring
Z
zhangjinchao01 已提交
2733 2734
    :param input: layer's input.
    :type input: LayerOutput
2735
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2736
    :type size: int
D
dangqingqing 已提交
2737
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2738
    :type scale: float
D
dangqingqing 已提交
2739
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2740 2741 2742 2743 2744
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2745
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2746 2747 2748
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2749
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2750 2751 2752


@wrap_bias_attr_default()
2753 2754
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2755 2756
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2757
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2758 2759 2760 2761 2762 2763 2764
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2786 2787 2788
    The example usage is:

    ..  code-block:: python
2789

L
Luo Tao 已提交
2790 2791
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2806
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2834
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2845
    l = Layer(
Z
zhangjinchao01 已提交
2846
        name=name,
Q
qijun 已提交
2847 2848
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2849 2850 2851 2852 2853 2854
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2855
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2856

Q
qijun 已提交
2857 2858 2859 2860 2861 2862 2863
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2891
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2892 2893 2894 2895 2896 2897
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2898 2899 2900
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2901 2902


G
guosheng 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2939 2940 2941
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2942
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2943
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2966 2967 2968
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2969 2970

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2971 2972
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2987
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2988 2989 2990 2991 2992 2993
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2994
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2995 2996 2997 2998 2999 3000 3001
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3002
    l = Layer(
Q
qijun 已提交
3003 3004 3005
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3006 3007
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3008
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3009

Q
qijun 已提交
3010 3011 3012 3013 3014 3015 3016
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3017 3018 3019 3020


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3021
@layer_support(DROPOUT, ERROR_CLIPPING)
3022
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3023 3024 3025 3026
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3027 3028 3029 3030 3031 3032
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3033 3034 3035
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3036
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3037 3038 3039 3040
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3041
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3042 3043 3044 3045 3046 3047 3048 3049
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3050
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3051 3052

    def __is_type__(o, tp):
3053
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3075 3076
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3077

Q
qijun 已提交
3078 3079
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3080

3081 3082
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3083

3084
    layer = Layer(
Q
qijun 已提交
3085 3086
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3087 3088
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3089
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3090
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3091

3092
    sz = layer.config.size
Z
zhangjinchao01 已提交
3093

Q
qijun 已提交
3094 3095 3096 3097 3098 3099 3100 3101
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3102 3103
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3104
@wrap_bias_attr_default(has_bias=False)
3105
@layer_support(DROPOUT, ERROR_CLIPPING)
3106 3107 3108 3109
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3110

3111
    Inputs:
X
xuwei06 已提交
3112
      - a = [a1, a2, ..., am]
3113
      - b = [b1, b2, ..., bn]
3114

X
xuwei06 已提交
3115 3116 3117 3118
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3136 3137 3138 3139
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3161
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3162 3163
def memory(name,
           size,
3164
           memory_name=None,
Q
qijun 已提交
3165 3166 3167 3168
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3189 3190 3191 3192 3193 3194 3195 3196 3197
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3198

3199 3200 3201 3202 3203 3204 3205
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3206 3207 3208
    :type name: basestring
    :param size: size of memory.
    :type size: int
3209 3210 3211
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3212
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3213 3214 3215 3216 3217 3218 3219 3220 3221
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3222
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3233 3234
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3235

3236 3237 3238 3239 3240 3241 3242 3243
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3244 3245

    lout = LayerOutput(
3246
        name=memory_name,
Q
qijun 已提交
3247 3248 3249
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3250 3251 3252 3253
    return lout


@wrap_bias_attr_default()
3254 3255
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3256 3257
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3258
@layer_support()
Q
qijun 已提交
3259 3260
def lstm_step_layer(input,
                    state,
3261
                    size=None,
Q
qijun 已提交
3262 3263 3264 3265 3266 3267
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3268
    """
3269 3270
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3271 3272 3273

    ..  math::

3274
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3275

3276
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3277

3278
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3279

3280
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3281

L
luotao02 已提交
3282
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3283 3284


L
luotao02 已提交
3285
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3286
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3287
    input vectors.
Z
zhangjinchao01 已提交
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3298 3299
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3300 3301 3302 3303
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3304 3305
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3324
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3325 3326
    :rtype: LayerOutput
    """
3327 3328 3329

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3330 3331 3332 3333 3334 3335 3336
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3337
        size=state.size,
Q
qijun 已提交
3338 3339
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3340

Q
qijun 已提交
3341 3342 3343 3344 3345 3346 3347
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3348 3349 3350


@wrap_bias_attr_default()
W
wangyang59 已提交
3351
@wrap_param_attr_default()
Q
qijun 已提交
3352
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3353 3354 3355
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3356 3357 3358 3359 3360 3361 3362
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3363
                   param_attr=None,
Q
qijun 已提交
3364
                   layer_attr=None):
Z
zhangjinchao01 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3375 3376
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3377
    :param layer_attr:
D
dangqingqing 已提交
3378
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3379 3380 3381 3382 3383 3384 3385 3386
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3387 3388 3389 3390
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3391
        # backward model compatibility.
3392
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3393 3394 3395 3396
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3397
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3398
    return LayerOutput(
Q
qijun 已提交
3399 3400
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3401
        parents=[input, output_mem],
Q
qijun 已提交
3402 3403
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3404 3405


Y
Yu Yang 已提交
3406 3407 3408 3409
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3410
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3478 3479 3480 3481
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3482 3483 3484 3485
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3486 3487 3488 3489 3490 3491 3492 3493 3494

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3495
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3496 3497 3498 3499 3500 3501 3502
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3503 3504 3505 3506 3507 3508 3509
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3510

Q
qijun 已提交
3511 3512 3513 3514 3515
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3516 3517 3518 3519 3520 3521 3522


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3523 3524 3525 3526 3527 3528 3529
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3530
    """
3531 3532
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3533

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3561
    :return: LayerOutput object.
3562
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3563
    """
Q
qijun 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3579 3580 3581 3582 3583 3584


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3585 3586
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3587
    """
3588

Z
zhangjinchao01 已提交
3589 3590 3591
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3592
        assert input.size is not None
Z
zhangjinchao01 已提交
3593
        if size is not None:
3594
            assert input.size == size
Z
zhangjinchao01 已提交
3595 3596


3597
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3598
    """
3599
    DEPRECATED.
Z
zhangjinchao01 已提交
3600 3601 3602 3603 3604 3605 3606 3607
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3608
    return input
Z
zhangjinchao01 已提交
3609 3610 3611


@wrap_name_default("recurrent_group")
3612
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3613
    """
C
caoying03 已提交
3614 3615 3616 3617 3618
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3663 3664
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3665
    :type reverse: bool
3666

3667 3668
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3669 3670 3671 3672 3673 3674 3675 3676 3677

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3678
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3679 3680 3681 3682
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3683
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3684
        input = [input]
3685
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3686 3687

    def is_in_links(x):
3688
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3689 3690 3691 3692

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3693
        name=name,
3694 3695
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3696 3697
    in_args = []
    for each_input in input:
3698
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3699
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3700
            mem = memory(
3701
                name=None,
Q
qijun 已提交
3702 3703
                size=each_input.input.size,
                boot_layer=each_input.input)
3704
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3705
            in_args.append(mem)
3706 3707
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3708

Z
zhangjinchao01 已提交
3709 3710 3711 3712 3713
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3714 3715 3716 3717 3718 3719
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3720 3721 3722

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3723
    for layer_out in layer_outs:
3724 3725
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3726 3727
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3728 3729 3730 3731 3732
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3733

Z
zhangjinchao01 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3762 3763

    def before_real_step(self):
Q
qijun 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3773 3774 3775
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3776
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3800
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3801 3802 3803 3804
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3815

3816

H
Haonan 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3853

Z
zhangjinchao01 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3870 3871
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3872 3873 3874 3875 3876 3877
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3878
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3879 3880
    :rtype: LayerOutput
    """
Q
qijun 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3892 3893 3894


@wrap_name_default()
Q
qijun 已提交
3895 3896 3897 3898 3899 3900 3901
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3902
                num_results_per_sample=None):
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3914
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3915 3916 3917 3918
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3919 3920 3921 3922 3923
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3924 3925
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3926 3927
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3928 3929
                               bos_id=0,
                               eos_id=1,
3930
                               beam_size=5)
3931 3932 3933 3934 3935 3936 3937 3938 3939

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3940
                 step, and it is applied to sequences with arbitrary length by
3941 3942 3943 3944 3945
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3946 3947
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3948
                  In beam_search, none of the input's type should be LayerOutput.
3949
    :type input: list
3950 3951 3952
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3953
                   symbol is essential, since it is used to initialize the RNN
3954 3955 3956 3957 3958 3959 3960 3961
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3962 3963
    :param max_length: Max generated sequence length.
    :type max_length: int
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3974 3975
    :return: The generated word index.
    :rtype: LayerOutput
3976 3977
    """

Z
zhangjinchao01 已提交
3978 3979 3980 3981 3982
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3983
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3984 3985 3986 3987 3988 3989
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3990 3991 3992
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
3993
        if isinstance(each_input, BaseGeneratedInput):
3994 3995
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
3996
            generated_input_index = i
3997

Z
zhangjinchao01 已提交
3998 3999 4000
        else:
            real_input.append(each_input)

4001
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4002 4003 4004 4005 4006 4007 4008 4009

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4010 4011 4012 4013 4014 4015
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4016 4017 4018 4019 4020 4021

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4022
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4023 4024
        return predict

4025 4026
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4027

Q
qijun 已提交
4028

4029 4030
def __cost_input__(input, label, weight=None):
    """
4031
    inputs and parents for cost layers.
4032 4033 4034 4035
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
4036
        assert weight.size == 1
4037 4038 4039
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4040

Z
zhangjinchao01 已提交
4041 4042

@wrap_name_default()
L
luotao1 已提交
4043
@layer_support()
4044
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4045
    """
L
Luo Tao 已提交
4046 4047 4048 4049
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4050
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4051 4052

    :param name: layer name.
4053
    :type name: basestring
Z
zhangjinchao01 已提交
4054
    :param input: Network prediction.
4055
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4056
    :param label: Data label.
4057 4058 4059 4060
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4061 4062
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4063 4064
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4065
    :return: LayerOutput object.
4066
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4067
    """
4068 4069
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4070 4071 4072 4073
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4074
        coeff=coeff,
Q
qijun 已提交
4075
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4076
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4077 4078


L
Luo Tao 已提交
4079 4080 4081
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4082
@wrap_name_default("cost")
4083
@layer_support()
Q
qijun 已提交
4084 4085 4086 4087
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4088
                        evaluator=classification_error_evaluator,
4089 4090
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4100 4101 4102
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4103
    :param evaluator: Evaluator method.
4104 4105
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4106 4107
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4108
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4109 4110 4111 4112 4113
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4114 4115 4116

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4117 4118 4119 4120
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4121
        coeff=coeff,
Q
qijun 已提交
4122
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4133
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4134

4135
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4136 4137 4138 4139 4140
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4141
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4142

4143

Q
qijun 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4153 4154
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4165 4166
       op = conv_operator(img=input1,
                          filter=input2,
4167
                          filter_size=3,
Z
zhangjinchao01 已提交
4168 4169 4170
                          num_filters=64,
                          num_channels=64)

4171 4172 4173 4174
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4175 4176
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4177 4178 4179
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4180
    :type filter_size_y: int
4181 4182
    :param num_filters: channel of output data.
    :type num_filters: int
4183 4184
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4185
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4186
    :type stride: int
Z
zhangjinchao01 已提交
4187
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4188
    :type stride_y: int
Z
zhangjinchao01 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4202

4203 4204
    if num_channels is None:
        num_channels = img.num_filters
4205 4206 4207

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4208
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4209

4210 4211 4212
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4224

4225
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4226 4227
    return op

Q
qijun 已提交
4228

4229
@wrap_param_attr_default()
Q
qijun 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4240 4241
                    param_attr=None,
                    trans=False):
4242 4243 4244 4245 4246 4247 4248 4249 4250
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4251
       proj = conv_projection(input=input1,
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4266 4267
    :param num_channels: channel of input data.
    :type num_channels: int
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4280 4281
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4312
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4313 4314 4315 4316 4317
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4318 4319 4320
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4333 4334 4335 4336

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4337

D
dangqingqing 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4355

D
dangqingqing 已提交
4356
    For example,
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4379 4380

    The simply usage is:
D
dangqingqing 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4442
@wrap_name_default()
L
luotao1 已提交
4443 4444
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4456 4457 4458 4459
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4460 4461 4462 4463 4464

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4465
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4466 4467 4468

    :param name: layer name
    :type name: basestring
4469 4470
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4471
    :param b: input layer b.
4472
    :type b: LayerOutput
L
luotao1 已提交
4473 4474
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4475
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4476 4477
    :rtype: LayerOutput
    """
4478 4479
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4480 4481 4482
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4483
        inputs=[a.name, b.name],
Q
qijun 已提交
4484
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4485

Q
qijun 已提交
4486 4487
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4488 4489 4490 4491 4492


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4493
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4494
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4495 4496 4497 4498 4499 4500 4501 4502
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4503 4504 4505 4506 4507
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4508
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4509 4510

    In this formular:
4511 4512
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4513 4514
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4515
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4516 4517 4518 4519 4520

    The simple usage is:

    .. code-block:: python

4521
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4522 4523 4524

    :param name: layer name
    :type name: basestring
4525 4526 4527 4528
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4529
    :param size: the layer dimension.
L
luotao02 已提交
4530
    :type size: int.
Z
zhangjinchao01 已提交
4531 4532 4533
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4534
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4535 4536 4537 4538 4539 4540
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4541
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4542 4543
    :rtype: LayerOutput
    """
4544
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4545 4546 4547 4548 4549 4550
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4551 4552 4553 4554
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4555 4556 4557 4558 4559 4560


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4561
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4562 4563
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4564
                       select=None,
Q
qijun 已提交
4565 4566
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4567 4568 4569
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4570 4571 4572
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4583
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4584 4585 4586 4587 4588

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4589 4590
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4591
                   If is None, acts exactly like fc_layer.
4592
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4605
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4606 4607 4608 4609
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4610
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4611 4612
        param_attr = [param_attr]
    else:
4613
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4614 4615 4616 4617
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4618 4619 4620 4621
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4622
    Layer(
Q
qijun 已提交
4623 4624 4625
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4626 4627 4628
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4629
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4630 4631 4632 4633
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4634 4635 4636 4637 4638 4639 4640
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4641 4642 4643


@wrap_name_default()
L
luotao1 已提交
4644 4645
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4660 4661
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4662
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4663 4664
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4665
    l = Layer(
Z
zhangjinchao01 已提交
4666 4667 4668
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4669 4670 4671
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4672 4673 4674


@wrap_name_default()
L
luotao1 已提交
4675
@layer_support()
Q
qijun 已提交
4676 4677 4678 4679
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4680
                          layer_attr=None):
Z
zhangjinchao01 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4702 4703
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4704
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4705 4706 4707 4708 4709 4710 4711 4712
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4713 4714 4715
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4716 4717 4718


@wrap_name_default()
L
luotao1 已提交
4719
@layer_support()
Q
qijun 已提交
4720
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4721
    """
4722 4723 4724 4725
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4726 4727 4728

    .. math::

4729
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4730

4731 4732 4733 4734 4735
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4736

4737
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4738 4739

    In this formular:
4740 4741 4742 4743 4744 4745
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4746 4747 4748 4749 4750

    The simple usage is:

    .. code-block:: python

4751
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4752 4753
                                       size=elem_dim)

4754 4755 4756 4757
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4758 4759 4760 4761
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4762 4763
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4764
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4765 4766
    :rtype: LayerOutput
    """
4767 4768 4769 4770
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4771
            size = vectors.size / weights.size
4772 4773
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4774 4775
    Layer(
        name=name,
4776
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4777
        size=size,
4778
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4779 4780 4781
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4782

4783

4784
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4785

4786

Z
zhangjinchao01 已提交
4787
@wrap_name_default()
L
luotao1 已提交
4788
@layer_support()
Z
zhangjinchao01 已提交
4789 4790 4791 4792 4793 4794 4795
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4796
                       num_channels=None,
L
luotao1 已提交
4797 4798
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4799 4800
    """
    Expand feature map to minibatch matrix.
4801
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4802
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4813
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4814 4815
    convolution neural network, and before recurrent neural network.

4816 4817 4818 4819
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4820
       block_expand = block_expand_layer(input=layer,
4821
                                         num_channels=128,
4822 4823 4824 4825 4826
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4827 4828
    :param input: The input layer.
    :type input: LayerOutput
4829 4830
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4845 4846
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4847
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4848 4849
    :rtype: LayerOutput
    """
4850 4851 4852
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4870 4871


4872 4873
@wrap_name_default()
@layer_support()
4874
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4875 4876 4877 4878 4879
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4880
    So groups should be larger than 1, and the num of channels should be able
4881 4882
    to devided by groups.

X
xuwei06 已提交
4883 4884 4885 4886 4887 4888 4889 4890
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4891
    Please refer to Paper:
4892 4893 4894 4895
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4896

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4935 4936


Z
zhangjinchao01 已提交
4937
@wrap_name_default()
L
luotao1 已提交
4938
@layer_support()
Q
qijun 已提交
4939 4940 4941 4942 4943
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4944
              layer_attr=None):
Z
zhangjinchao01 已提交
4945 4946 4947 4948 4949
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4950 4951
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4952 4953
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4954 4955 4956 4957 4958 4959 4960 4961

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4962
    The example usage is:
Z
zhangjinchao01 已提交
4963 4964 4965 4966 4967 4968 4969 4970

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4971
    :param input: The input layer.
Z
zhangjinchao01 已提交
4972 4973 4974
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4975
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4976
    :type size: int
4977 4978
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4979 4980
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4981 4982
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4983
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4984 4985 4986 4987
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4988 4989 4990 4991 4992
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4993
    Layer(
4994 4995 4996 4997
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4998
        inputs=[input.name, label.name],
Q
qijun 已提交
4999
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5000 5001
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5002

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5014
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5015
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
5033 5034 5035 5036

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5037
    icml2006_GravesFGS06.pdf>`_.
5038 5039 5040

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5041 5042 5043
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5044 5045
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5046
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5047
          'linear' activation is expected instead in the 'input' layer.
5048

C
caoying03 已提交
5049
    The example usage is:
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5095
@wrap_name_default()
5096
@wrap_param_attr_default()
L
luotao1 已提交
5097
@layer_support()
Q
qijun 已提交
5098 5099 5100 5101 5102 5103
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5104
              coeff=1.0,
L
luotao1 已提交
5105
              layer_attr=None):
Z
zhangjinchao01 已提交
5106 5107 5108 5109
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5110
    The example usage is:
Z
zhangjinchao01 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5121
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5131 5132
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5133 5134
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5135
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5136 5137 5138 5139 5140
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5141 5142 5143 5144 5145 5146
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5147

Q
qijun 已提交
5148
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5149 5150 5151 5152
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5153 5154 5155 5156
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5157
        coeff=coeff,
Q
qijun 已提交
5158
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5159 5160 5161
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5162 5163 5164 5165
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5166

5167

Z
zhangjinchao01 已提交
5168
@wrap_name_default()
5169
@wrap_param_attr_default()
L
luotao1 已提交
5170
@layer_support()
Q
qijun 已提交
5171 5172 5173 5174 5175
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5176
                       layer_attr=None):
Z
zhangjinchao01 已提交
5177 5178 5179 5180 5181 5182 5183
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5184
    The example usage is:
L
Luo Tao 已提交
5185 5186 5187 5188 5189 5190

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5201 5202
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5203
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5204 5205 5206 5207 5208 5209
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5210
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5211 5212 5213 5214
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5215 5216 5217 5218
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5219
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5220 5221 5222
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5223 5224 5225 5226
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5227

Q
qijun 已提交
5228

Y
Yu Yang 已提交
5229
@wrap_act_default(act=SigmoidActivation())
5230
@wrap_bias_attr_default(has_bias=True)
5231
@wrap_param_attr_default()
5232 5233
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5234 5235
def nce_layer(input,
              label,
C
caoying03 已提交
5236
              num_classes=None,
Y
Yu Yang 已提交
5237
              act=None,
5238
              param_attr=None,
Q
qijun 已提交
5239 5240 5241 5242 5243 5244
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5245 5246 5247 5248 5249 5250 5251 5252 5253
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5254 5255
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5267
    :type num_classes: int
Y
Yu Yang 已提交
5268 5269
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5270 5271
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5272
    :param num_neg_samples: number of negative samples. Default is 10.
5273
    :type num_neg_samples: int
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5287 5288 5289 5290 5291 5292 5293 5294
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5295
    assert isinstance(input, collections.Sequence)
5296

5297 5298
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5299 5300
    if num_classes is None:
        num_classes = label.size
5301 5302 5303
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5304
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5305 5306
    if not isinstance(act, BaseActivation):
        raise TypeError()
5307

5308 5309
    ipts_for_layer = []
    parents = []
5310
    for each_input, attr in zip(input, param_attr):
5311
        assert isinstance(each_input, LayerOutput)
5312
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5323
    l = Layer(
5324 5325 5326 5327
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5328
        active_type=act.name,
5329 5330 5331
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5332 5333
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5334 5335 5336 5337 5338
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5339

5340

Z
zhangjinchao01 已提交
5341 5342 5343
"""
following are cost Layers.
"""
5344 5345


Z
zhangjinchao01 已提交
5346
@wrap_name_default()
L
luotao1 已提交
5347
@layer_support()
Q
qijun 已提交
5348 5349 5350 5351 5352 5353 5354
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5355
    """
5356
    A cost Layer for learning to rank using gradient descent. Details can refer
5357 5358
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5359 5360 5361 5362 5363
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5364
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5365

L
luotao02 已提交
5366
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5367

L
luotao02 已提交
5368
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5369 5370 5371 5372 5373 5374 5375 5376

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5377
    The example usage is:
Z
zhangjinchao01 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5398 5399
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5400
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5413 5414 5415 5416 5417 5418
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5419

X
xuwei06 已提交
5420
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5421

5422

Z
zhangjinchao01 已提交
5423
@wrap_name_default()
L
luotao1 已提交
5424
@layer_support()
Q
qijun 已提交
5425 5426 5427 5428 5429 5430
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5431 5432 5433
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5434
    The example usage is:
Z
zhangjinchao01 已提交
5435 5436 5437 5438 5439 5440 5441 5442

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5443
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5455 5456 5457
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5458 5459 5460
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5461 5462
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5463
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5464 5465
    :rtype: LayerOutput
    """
5466 5467 5468
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5469 5470 5471 5472 5473 5474 5475
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5476

Q
qijun 已提交
5477 5478
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5479

5480

Z
zhangjinchao01 已提交
5481
@wrap_name_default()
L
luotao1 已提交
5482
@layer_support()
5483 5484 5485 5486 5487 5488
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5489 5490 5491
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5492 5493
    The example usage is:

Z
zhangjinchao01 已提交
5494 5495
    .. code-block:: python

X
xuwei06 已提交
5496
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5497
                            label=label_layer)
Z
zhangjinchao01 已提交
5498 5499 5500 5501 5502 5503 5504

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5505 5506
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5507
    :type coeff: float.
5508 5509 5510 5511
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5512 5513
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5514
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5515 5516 5517
    :rtype: LayerOutput.
    """

5518
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5519 5520 5521
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5522
        inputs=ipts,
Q
qijun 已提交
5523 5524
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5525
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5526

5527

Z
zhangjinchao01 已提交
5528
@wrap_name_default()
L
luotao1 已提交
5529
@layer_support()
Q
qijun 已提交
5530 5531 5532 5533
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5534 5535
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5536 5537
    """
    A loss layer for multi class entropy with selfnorm.
5538
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5539

C
caoying03 已提交
5540 5541
    The example usage is:

Z
zhangjinchao01 已提交
5542 5543
    .. code-block:: python

X
xuwei06 已提交
5544
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5545
                                          label=label_layer)
Z
zhangjinchao01 已提交
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5557 5558
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5559
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5560 5561
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5562 5563 5564 5565 5566 5567 5568
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5569

Q
qijun 已提交
5570 5571 5572 5573 5574
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5575

5576

X
xuwei06 已提交
5577 5578 5579 5580 5581 5582
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5583 5584
    The example usage is:

X
xuwei06 已提交
5585 5586
    .. code-block:: python

L
Luo Tao 已提交
5587
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5598
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5599 5600 5601 5602 5603
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5604

Q
qijun 已提交
5605
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5606 5607


Z
zhangjinchao01 已提交
5608
@wrap_name_default()
L
luotao1 已提交
5609 5610
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5611 5612 5613
    """
    A loss layer for huber loss.

C
caoying03 已提交
5614 5615
    The example usage is:

Z
zhangjinchao01 已提交
5616 5617
    .. code-block:: python

X
xuwei06 已提交
5618
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5619
                         label=label_layer)
Z
zhangjinchao01 已提交
5620 5621 5622 5623 5624 5625 5626 5627 5628

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5629 5630
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5631
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5632 5633
    :rtype: LayerOutput.
    """
5634 5635 5636
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5637 5638 5639 5640 5641 5642
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5643
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5644

5645

Z
zhangjinchao01 已提交
5646
@wrap_name_default()
L
luotao1 已提交
5647
@layer_support()
Q
qijun 已提交
5648 5649 5650 5651
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5652
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5653 5654 5655
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5656 5657
    The example usage is:

Z
zhangjinchao01 已提交
5658 5659
    .. code-block:: python

X
xuwei06 已提交
5660
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5661
                                               label=label_layer)
Z
zhangjinchao01 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5671 5672
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5673
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5674 5675 5676
    :rtype: LayerOutput
    """

5677 5678
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5695 5696 5697 5698


@wrap_name_default()
@layer_support()
5699
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5700 5701
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5702
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5712
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5713

D
dangqingqing 已提交
5714 5715 5716
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5717 5718
    The example usage is:

D
dangqingqing 已提交
5719 5720
    .. code-block:: python

5721 5722
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5723 5724 5725 5726 5727 5728 5729

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5730 5731
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5745
        coeff=coeff,
D
dangqingqing 已提交
5746 5747 5748
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5768 5769
    The example usage is:

W
wwhu 已提交
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5802 5803


5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5820 5821


D
dangqingqing 已提交
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5844

D
dangqingqing 已提交
5845 5846 5847 5848 5849
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5850

D
dangqingqing 已提交
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5894 5895


5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5915 5916 5917 5918 5919 5920
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5921 5922 5923 5924 5925
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5926 5927 5928 5929 5930 5931

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5932 5933 5934 5935 5936 5937 5938 5939
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5940
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5941
    assert isinstance(param_attr, ParameterAttribute)
5942 5943 5944

    l = Layer(
        name=name,
C
caoying03 已提交
5945
        type=LayerType.PRELU,
C
caoying03 已提交
5946
        inputs=Input(input.name, **param_attr.attr),
5947 5948 5949 5950 5951 5952 5953
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5954 5955


5956
@wrap_name_default()
C
caoying03 已提交
5957
@layer_support(ERROR_CLIPPING, DROPOUT)
5958 5959 5960 5961 5962 5963 5964
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
5965 5966
                     gate_bias_attr=True,
                     inproj_attr=None,
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6003 6004 6005 6006 6007 6008
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6031
        layer_attr=inproj_attr,
6032 6033 6034 6035 6036 6037 6038 6039 6040
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6041
        param_attr=gate_param_attr,
6042 6043 6044 6045 6046
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6047 6048


6049 6050
@wrap_name_default()
@layer_support()
6051
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6052
    """
6053
    The crop layer crops images by offset and shape. User can set crop shape by
6054
    args 'shape' explicitly or by reference input layer.
6055

6056 6057 6058
    The example usage is:

    .. code-block:: python
W
whs 已提交
6059
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6060 6061 6062 6063

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6064 6065
    :param offset: The crop offset
    :type offset: Sequence
6066 6067 6068 6069 6070 6071 6072
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6073
    :type shape: Sequence | None
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6096 6097


C
caoying03 已提交
6098 6099
@wrap_name_default()
@layer_support()
6100
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6101
    """
6102
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6103
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6104

C
caoying03 已提交
6105 6106 6107
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6108 6109 6110 6111

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6112 6113

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6114

C
caoying03 已提交
6115

6116 6117 6118
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6119 6120 6121 6122 6123 6124
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6125

6126 6127 6128 6129 6130 6131 6132
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6133
    l = Layer(
6134 6135
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6136 6137 6138 6139 6140 6141 6142
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6143 6144


G
guosheng 已提交
6145
@wrap_name_default("clip")
6146
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6156
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6157 6158 6159 6160 6161

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6162 6163 6164 6165
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6166 6167
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6168 6169 6170 6171 6172
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6173 6174
        min=min,
        max=max)
G
guosheng 已提交
6175 6176
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242


@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

    :param name: name of this layer.
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6243 6244


6245 6246
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6247
    """
C
caoying03 已提交
6248
    This layer accepts one input which are scores over a sequence or a nested
6249 6250 6251 6252 6253 6254 6255 6256 6257
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6258
    :param input: The input layer. It stores scores over a sequence or a nested
6259 6260 6261 6262 6263 6264 6265
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6266
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6267
                                            "accepts only one input.")
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)