downpour_worker.cc 37.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/fleet/metrics.h"
17
#include "paddle/fluid/operators/isfinite_op.h"
18
#include "paddle/fluid/platform/cpu_helper.h"
W
wanghuancoder 已提交
19

20
namespace phi {
21
class DenseTensor;
22
}  // namespace phi
23

W
wanghuancoder 已提交
24 25 26 27 28
namespace paddle {
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle
29

30 31 32 33 34
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

35 36
namespace paddle {
namespace framework {
37
void DownpourWorker::Initialize(const TrainerDesc& desc) {
38
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
39
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
40 41 42 43
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
45 46 47
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
48
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
49 50 51
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
52
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
53 54
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
55
    label_var_name_[table_id] = table.label_var_name();
56
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
57 58
  }

D
dongdaxiang 已提交
59
  for (int i = 0; i < param_.dense_table_size(); ++i) {
60 61 62
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
63
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
64 65 66
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
67
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
68 69 70 71
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

Z
zhang wenhui 已提交
72 73 74 75 76 77 78
  flag_partial_push_ = false;
  for (auto& m : param_.program_config(0).partial_pushdense_condtable_map()) {
    cond2table_map_[m.key()] = m.value();
    condvalue_set_.insert(m.value());
    flag_partial_push_ = true;
  }

79
  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
80
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
81 82
    skip_ops_[i] = param_.skip_ops(i);
  }
83

84 85 86 87
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

88 89 90
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

91
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
92
  fetch_config_ = desc.fetch_config();
93
  use_cvm_ = desc.use_cvm();
94 95
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
96 97
  scale_sparse_gradient_with_batch_size_ =
      desc.scale_sparse_gradient_with_batch_size();
98
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
99
  dump_slot_ = desc.dump_slot();
100
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
101 102 103
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
127 128
}

129
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
130 131 132
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
133
  uint64_t table_id = static_cast<uint64_t>(
134
      param_.program_config(0).pull_sparse_table_id(table_idx));
135

H
heqiaozhi 已提交
136 137 138 139 140 141 142
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
143 144 145
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
146
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
147 148 149
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
150
  size_t global_index = 0;
151
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
152 153
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
154
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
155 156 157
    if (fea_var == nullptr) {
      continue;
    }
158
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
159 160
    CHECK(tensor != nullptr)
        << "tensor of var " << sparse_key_names_[table_id][i] << " is null";
161 162 163 164 165 166 167 168

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

169
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
170
    size_t fea_idx = 0;
171
    // tensor->lod()[0].size() == batch_size + 1
172 173
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
174 175 176 177
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
178 179
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
180 181 182 183 184 185 186 187
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
188
  uint64_t table_id = static_cast<uint64_t>(
189
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
190 191 192 193 194 195 196 197

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
198 199 200 201

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
202
  std::vector<float> init_value(table.fea_dim());
203 204 205 206
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
207 208 209
    if (var == nullptr) {
      continue;
    }
210
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
211
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
212 213 214
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
215 216 217
    if (var_emb == nullptr) {
      continue;
    }
218 219 220 221 222 223 224
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
225 226 227 228 229 230 231 232

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
233
    for (int index = 0; index < len; ++index) {
234
      if (use_cvm_ || no_cvm_) {
235
        if (ids[index] == 0u) {
236 237
          memcpy(ptr + table.emb_dim() * index,
                 init_value.data(),
238
                 sizeof(float) * table.emb_dim());
239 240 241 242
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
243 244
          continue;
        }
245 246
        memcpy(ptr + table.emb_dim() * index,
               fea_value[fea_idx].data(),
247
               sizeof(float) * table.emb_dim());
248 249
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
250 251 252
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
253 254 255
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
256 257
          memcpy(ptr + table.emb_dim() * index,
                 init_value.data() + 2,
258
                 sizeof(float) * table.emb_dim());
259 260 261 262
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
263 264
          continue;
        }
265 266
        memcpy(ptr + table.emb_dim() * index,
               fea_value[fea_idx].data() + 2,
267
               sizeof(float) * table.emb_dim());
268 269
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
270 271 272
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
273
        fea_idx++;
274 275 276 277 278
      }
    }
  }
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
317 318 319
  CHECK(len == nid_show_.size())
      << "ins_weight size should be equal to "
      << "nid_show size, " << len << " vs " << nid_show_.size();
320 321 322 323 324
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
325
  for (size_t i = 0; i < len; ++i) {
326 327 328 329 330 331 332 333
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
334 335
      ins_weight = log(M_E + (nid_adjw_threshold - nid_show) /
                                 nid_adjw_threshold * nid_adjw_ratio);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
400 401
      fleet_ptr_->PullDenseVarsAsync(*root_scope_,
                                     dest_table,
X
xujiaqi01 已提交
402
                                     dense_value_names_[dest_table],
403 404
                                     &pull_dense_status,
                                     true);
X
xujiaqi01 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
432 433
    CHECK(src_tensor != nullptr)
        << src_var_name << " tensor is null";  // NOLINT
X
xujiaqi01 已提交
434 435 436 437 438
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
439 440
    CHECK(dest_tensor != nullptr)
        << dest_var_name << " tensor is null";  // NOLINT
X
xujiaqi01 已提交
441 442 443 444 445 446 447 448 449 450 451
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

452 453 454
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
480
  double adjust_ins_weight_time = 0.0;
481 482 483 484
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
485
  double copy_table_time = 0.0;
486 487
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
488
  uint64_t total_inst = 0;
489 490 491 492 493
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

508
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
509
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
510 511 512 513
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
514 515 516
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
517 518 519 520
          break;
        }
      }
      timeline.Start();
521 522 523 524 525 526 527
      fleet_ptr_->PullSparseVarsSync(*thread_scope_,
                                     tid,
                                     sparse_key_names_[tid],
                                     &features_[tid],
                                     &feature_values_[tid],
                                     table.fea_dim(),
                                     sparse_value_names_[tid]);
528 529
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
530
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
531
      timeline.Start();
532 533 534
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
535
      total_time += timeline.ElapsedSec();
536 537 538 539
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
540
      total_time += timeline.ElapsedSec();
541 542 543 544 545 546 547 548 549 550
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
551 552 553 554 555 556 557 558 559 560 561 562 563 564
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
565
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
566
        op->Run(*thread_scope_, place_);
567
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
568 569 570 571 572 573
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

574 575 576 577 578 579 580 581 582 583
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
584 585
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor),
                        false,
586 587
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
588 589
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor),
                        false,
590 591
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
592 593
    }

594
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
595 596
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
597 598 599 600 601 602 603 604
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
605
        }
606 607
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
608 609 610 611 612 613 614 615 616 617 618 619 620 621
            *thread_scope_,
            tid,
            features_[tid],
            feature_labels_[tid],
            sparse_key_names_[tid],
            sparse_grad_names_[tid],
            table.emb_dim(),
            &feature_grads_[tid],
            &push_sparse_status_,
            cur_batch,
            use_cvm_,
            dump_slot_,
            &sparse_push_keys_[tid],
            no_cvm_,
622
            scale_sparse_gradient_with_batch_size_);
623 624 625
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
626
      }
627 628
    }

X
xujiaqi01 已提交
629 630 631 632 633 634 635 636 637 638 639 640
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

641
    if (need_to_push_dense_) {
642
      timeline.Start();
D
dongdaxiang 已提交
643 644
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
645 646
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
647 648 649 650 651 652
        fleet_ptr_->PushDenseVarsAsync(*thread_scope_,
                                       tid,
                                       dense_grad_names_[tid],
                                       &push_sparse_status_,
                                       scale_datanorm_,
                                       cur_batch);
653
      }
654
      timeline.Pause();
655
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
656
      total_time += timeline.ElapsedSec();
657 658 659 660 661 662 663 664 665
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
666 667
      }

668 669
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
670 671 672
      }
    }

673
    if (need_to_push_sparse_) {
674 675 676
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
677 678 679 680 681 682
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
683

684 685 686
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
687

688 689 690
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
691 692 693
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
694 695
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
696 697 698 699
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
700 701
    }

D
dongdaxiang 已提交
702
    PrintFetchVars();
703
    thread_scope_->DropKids();
D
dongdaxiang 已提交
704
    total_inst += cur_batch;
705 706 707 708 709
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
710 711
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
712
        for (size_t i = 0; i < op_total_time.size(); ++i) {
713 714 715 716 717
          fprintf(stderr,
                  "op_name:[%zu][%s], op_mean_time:[%fs]\n",
                  i,
                  op_name[i].c_str(),
                  op_total_time[i] / batch_cnt);
718 719 720 721 722 723 724
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
725 726 727
          fprintf(stderr,
                  "op [%s] run total time: [%f]ms\n",
                  i.first.c_str(),
728
                  i.second / batch_cnt);
729
        }
730 731
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
732 733 734 735 736 737
        fprintf(
            stderr, "pull sparse time: %fs\n", pull_sparse_time / batch_cnt);
        fprintf(
            stderr, "fill sparse time: %fs\n", fill_sparse_time / batch_cnt);
        fprintf(
            stderr, "push sparse time: %fs\n", push_sparse_time / batch_cnt);
738
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
739 740
        fprintf(stderr,
                "collect label time: %fs\n",
741
                collect_label_time / batch_cnt);
742 743
        fprintf(stderr,
                "adjust ins weight time: %fs\n",
744
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
745
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
746 747
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
748
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
749 750
        fprintf(stderr,
                "pull sparse time percent: %f\n",
D
dongdaxiang 已提交
751
                pull_sparse_time / total_time * 100);
752 753
        fprintf(stderr,
                "adjust ins weight time percent: %f\n",
754
                adjust_ins_weight_time / total_time * 100);
755 756
        fprintf(stderr,
                "copy table time percent: %f\n",
X
xujiaqi01 已提交
757
                copy_table_time / total_time * 100);
758 759
        fprintf(stderr,
                "collect label time percent: %f\n",
D
dongdaxiang 已提交
760
                collect_label_time / total_time * 100);
761 762
        fprintf(stderr,
                "fill sparse time percent: %f\n",
D
dongdaxiang 已提交
763
                fill_sparse_time / total_time * 100);
764 765
        fprintf(stderr,
                "push sparse time percent: %f\n",
D
dongdaxiang 已提交
766
                push_sparse_time / total_time * 100);
767 768
        fprintf(stderr,
                "push dense time percent: %f\n",
D
dongdaxiang 已提交
769
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
770
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
771 772
      }
    }
D
dongdaxiang 已提交
773
    timeline.Start();
774
  }
X
xujiaqi01 已提交
775 776 777 778 779
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
780 781
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
#ifdef PADDLE_WITH_PSLIB
/**
 * @brief add auc monitor
 */
inline void AddAucMonitor(const Scope* scope, const platform::Place& place) {
  auto metric_ptr = Metric::GetInstance();
  auto& metric_list = metric_ptr->GetMetricList();
  for (auto iter = metric_list.begin(); iter != metric_list.end(); iter++) {
    auto* metric_msg = iter->second;
    if (metric_ptr->Phase() != metric_msg->MetricPhase()) {
      continue;
    }
    metric_msg->add_data(scope, place);
  }
}
#endif

799
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
800
  VLOG(3) << "Begin to train files";
801
  platform::SetNumThreads(1);
802
  device_reader_->Start();
803 804
  int batch_cnt = 0;
  int cur_batch;
805
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
806 807 808 809 810 811 812
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
813
    // pull sparse here
D
dongdaxiang 已提交
814
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
815 816 817 818
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
819 820 821
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
822 823 824
          break;
        }
      }
825 826 827 828 829 830 831
      fleet_ptr_->PullSparseVarsSync(*thread_scope_,
                                     tid,
                                     sparse_key_names_[tid],
                                     &features_[tid],
                                     &feature_values_[tid],
                                     table.fea_dim(),
                                     sparse_value_names_[tid]);
832 833
      CollectLabelInfo(i);
      FillSparseValue(i);
834 835 836 837 838 839
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
840
    }
D
dongdaxiang 已提交
841
    VLOG(3) << "fill sparse value for all sparse table done.";
842 843 844

    // do computation here
    for (auto& op : ops_) {
845 846 847 848 849 850 851 852
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
853 854 855 856 857 858 859 860 861 862 863 864
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
865 866 867
          fprintf(stderr,
                  "batch_size: %zu, ins_ids_vec: %s\n",
                  batch_size,
868 869 870 871 872 873 874 875 876 877 878 879
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
880 881
            } else if (var->IsType<phi::SelectedRows>()) {
              auto selected_rows = var->GetMutable<phi::SelectedRows>();
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
897
        op->Run(*thread_scope_, place_);
898
#endif
899
      }
900 901
    }

902 903 904 905 906 907 908
#ifdef PADDLE_WITH_PSLIB
    // add data for MetricMsg
    if (Metric::GetInstance() != nullptr) {
      AddAucMonitor(thread_scope_, place_);
    }
#endif

909 910 911 912 913 914 915 916 917 918
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
919 920
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor),
                        false,
921 922
                        platform::errors::InvalidArgument(
                            "Tensor %s contains Inf.", var_name));
923 924
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor),
                        false,
925 926
                        platform::errors::InvalidArgument(
                            "Tensor %s contains NAN.", var_name));
927 928
    }

929 930
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
931 932
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
933 934 935 936 937 938 939 940
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
941
        }
942
        fleet_ptr_->PushSparseVarsWithLabelAsync(
943 944 945 946 947 948 949 950 951 952 953 954 955 956
            *thread_scope_,
            tid,
            features_[tid],
            feature_labels_[tid],
            sparse_key_names_[tid],
            sparse_grad_names_[tid],
            table.emb_dim(),
            &feature_grads_[tid],
            &push_sparse_status_,
            cur_batch,
            use_cvm_,
            dump_slot_,
            &sparse_push_keys_[tid],
            no_cvm_,
957
            scale_sparse_gradient_with_batch_size_);
H
heqiaozhi 已提交
958
      }
959 960
    }

X
xujiaqi01 已提交
961 962 963 964 965 966 967 968 969 970 971 972
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

973
    if (need_to_push_dense_) {
Z
zhang wenhui 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
      if (flag_partial_push_) {
        Variable* var = (*thread_scope_).FindVar("cond_tag");
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        // check type in python code
        int64_t* cond_value_batch = tensor->data<int64_t>();

        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));
          if (condvalue_set_.find(tid) != condvalue_set_.end()) {
            // common dense table must push dense
            if (cond2table_map_[cond_value_batch[0]] != tid) {
              // can't push dense
              continue;
            }
          }

          VLOG(3) << "push multitask dense gradient " << tid;
993 994 995 996 997 998
          fleet_ptr_->PushDenseVarsAsync(*thread_scope_,
                                         tid,
                                         dense_grad_names_[tid],
                                         &push_sparse_status_,
                                         scale_datanorm_,
                                         cur_batch);
Z
zhang wenhui 已提交
999 1000 1001 1002 1003 1004 1005 1006
        }

      } else {
        for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
             ++i) {
          uint64_t tid = static_cast<uint64_t>(
              param_.program_config(0).push_dense_table_id(i));

1007 1008 1009 1010 1011 1012
          fleet_ptr_->PushDenseVarsAsync(*thread_scope_,
                                         tid,
                                         dense_grad_names_[tid],
                                         &push_sparse_status_,
                                         scale_datanorm_,
                                         cur_batch);
Z
zhang wenhui 已提交
1013
        }
1014
      }
Z
zhang wenhui 已提交
1015

1016
      VLOG(3) << "push dense gradient done.";
1017

1018 1019 1020 1021 1022
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
1023

1024 1025 1026 1027 1028
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
1029 1030
      }

1031 1032 1033
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
1034 1035
    }

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
1046 1047
      }

1048 1049 1050
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
1051 1052
    }

1053
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
1054 1055
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
1056 1057 1058 1059
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
1060
    }
1061
    if (need_dump_field_) {
H
hutuxian 已提交
1062 1063 1064 1065
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
1066
    }
1067

D
dongdaxiang 已提交
1068
    PrintFetchVars();
1069 1070 1071
    thread_scope_->DropKids();
    ++batch_cnt;
  }
H
hutuxian 已提交
1072
  if (need_dump_field_ || need_dump_param_) {
1073 1074
    writer_.Flush();
  }
X
xujiaqi01 已提交
1075 1076 1077 1078 1079
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
1080 1081 1082 1083
}

}  // end namespace framework
}  // end namespace paddle