backward.py 95.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from .proto import framework_pb2
16

17
from paddle.fluid import framework as framework
18
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import logging
M
minqiyang 已提交
23
from .. import compat as cpt
24
from . import unique_name
25
from . import log_helper
L
liym27 已提交
26
import paddle.fluid
27
from .data_feeder import check_type
28
import warnings
29

30 31 32 33
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
34

M
mapingshuo 已提交
35 36 37 38 39
__all__ = [
    'append_backward',
    'gradients',
]

40 41 42
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
43

M
mapingshuo 已提交
44 45 46 47 48 49 50 51 52 53 54

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
55 56 57 58
            if (
                len(self.var_op_deps[name]["var_as_output_ops"]) == 0
                and len(self.var_op_deps[name]["var_as_input_ops"]) > 0
            ):
M
mapingshuo 已提交
59 60 61 62 63 64 65 66 67 68 69
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
70
            if op.desc.type() == "seed":
M
mapingshuo 已提交
71 72 73 74 75 76 77 78 79 80 81
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
82 83 84 85 86
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
111

M
mapingshuo 已提交
112 113
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
114 115 116 117 118 119
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
120 121 122 123
            return (
                op.desc.type() == 'cast'
                and self.block.var(op.desc.input_arg_names()[0]).persistable
            )
J
JZ-LIANG 已提交
124 125 126 127 128

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
129 130 131 132 133 134
                _logger.info(
                    "found amp-cast op: {}, : {}".format(
                        self.ops[idx_].desc.type(),
                        self.ops[idx_].desc.input_arg_names()[0],
                    )
                )
J
JZ-LIANG 已提交
135 136 137 138 139 140 141
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
142 143 144 145 146
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
147
                    self.op_deps[i]["in_ops"].extend(
148 149
                        self.var_op_deps[name]["var_as_output_ops"]
                    )
M
mapingshuo 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

169 170 171 172
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
173
                _logger.info(
174
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
175 176
                    % name
                )
177 178 179 180 181
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
182 183
                    (name, max(self.var_op_deps[name]["var_as_output_ops"]))
                )
184 185 186
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
187 188 189 190 191 192
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
193
        while op_idx < len(self.ops):
M
mapingshuo 已提交
194 195 196 197
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
198 199 200 201
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
202 203
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
204 205 206
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
M
mapingshuo 已提交
207 208 209 210 211
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
212 213
                stop_gradient=False,
            )
M
mapingshuo 已提交
214
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
215

216 217
            op_device_attr_name = (
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
218 219 220 221 222
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

223
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
224
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
225 226 227 228 229 230 231
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed, 'op_device': op_device, 'force_cpu': True},
            )
M
mapingshuo 已提交
232 233 234 235 236 237 238 239
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
240 241

def _pretty_op_desc_(op_desc, prefix):
242 243 244 245 246 247 248 249
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % (
        prefix + "_op",
        str(op_desc.type()),
        prefix + "_input",
        " ".join(op_desc.input_arg_names()),
        prefix + "_output",
        " ".join(op_desc.output_arg_names()),
    )
M
mapingshuo 已提交
250 251 252
    return out_s


253 254 255
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, grad_op_id_to_fwd_op=None
):
M
mapingshuo 已提交
256 257 258
    if len(descs) == 0:
        return []
    result_descs = []
259
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
260 261
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
262 263
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
264 265
        if isinstance(desc, framework.Operator):
            desc = desc.desc
266
            origin_is_operator = True
M
mapingshuo 已提交
267 268 269 270 271 272 273 274 275
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
276 277
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
278 279 280
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
281 282
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
283 284 285 286
            result_descs.append(new_op_desc)
    return result_descs


287
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
288 289 290
    if len(descs) == 0:
        return []
    result_descs = []
291
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
292 293 294
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
295 296 297
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
298 299 300 301 302 303
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
304 305
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
306 307 308 309 310 311 312
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
313 314 315 316
        if (
            len(op.output_arg_names) == 1
            and op.output_arg_names[0] == loss.name
        ):
M
mapingshuo 已提交
317 318 319 320
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
321 322


323 324
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
325
    Traverse all ops in op_descs[begin_idx : end_idx],
326 327
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
328 329 330
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
331
        end_idx = len(op_descs)
332 333 334 335 336 337 338 339 340 341 342 343 344
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
345 346


F
fengjiayi 已提交
347
def _create_op_desc_(op_type, inputs, outputs, attrs):
348 349 350
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
351 352
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
353
    for para, args in inputs.items():
354 355 356
        op_desc.set_input(
            para,
            list(
357 358 359 360 361 362
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
363
    for para, args in outputs.items():
364 365 366
        op_desc.set_output(
            para,
            list(
367 368 369 370 371 372
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
Y
yuyang18 已提交
373 374

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
375
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
376 377 378

    if op_role_attr_name not in attrs:
        attrs[
379 380
            op_role_attr_name
        ] = core.op_proto_and_checker_maker.OpRole.Backward
381 382
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
383
    for name, val in attrs.items():
F
fengjiayi 已提交
384 385 386
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
387
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
388 389 390
    return op_desc


M
mapingshuo 已提交
391 392
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
393 394 395 396
        "fill_constant",
        {},
        {"Out": [_append_grad_suffix_(loss.name)]},
        {
M
mapingshuo 已提交
397
            "shape": [1],
398 399 400 401 402 403
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName(): int(
                core.op_proto_and_checker_maker.OpRole.Backward
            )
404
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
405 406 407 408 409
            core.op_proto_and_checker_maker.kOpDeviceAttrName(): loss.op.attr(
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
            ),
        },
    )
M
mapingshuo 已提交
410 411 412
    return op_desc


413
def _infer_var_data_type_shape_(grad_var_name, block):
414
    """
415
    Infer the data type and shape of given grad variable
416
    """
417
    grad_var = block.desc.find_var(grad_var_name.encode())
M
minqiyang 已提交
418
    fwd_name = _strip_grad_suffix_(grad_var_name)
419 420
    if block.desc.has_var_recursive(fwd_name.encode()):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode())
F
fengjiayi 已提交
421
        grad_var.set_dtype(fwd_var.dtype())
422
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
423
    else:
424 425
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
426 427 428 429
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var".format(
                grad_var_name
            )
        )
430
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
431 432


F
fengjiayi 已提交
433
def _all_in_set_(cands, s):
434 435 436
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
437 438
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
439 440 441 442 443 444
    for c in cands:
        if not c in s:
            return False
    return True


445 446 447 448 449 450
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
451 452
    for c in cands:
        if c in s:
453 454 455 456
            return True
    return False


F
fengjiayi 已提交
457
def _strip_grad_suffix_(name):
458
    """
M
mapingshuo 已提交
459
    Strip the grad suffix from the given variable name
460 461 462
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
463
    pos = name.find(core.grad_var_suffix())
464 465
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
466
    return new_name[new_pos + 5 :] if new_pos != -1 else new_name
F
fengjiayi 已提交
467 468 469


def _append_grad_suffix_(name):
470 471 472 473
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
474
    return name + core.grad_var_suffix()
F
fengjiayi 已提交
475 476


477 478 479
def _accumulate_gradients_by_sum_op_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
480 481 482 483 484 485
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
486 487 488 489 490 491 492
        _create_op_desc_(
            "sum",
            {"X": renamed_vars[var_name]},
            {"Out": [var_name]},
            {"use_mkldnn": False, "op_device": op_device},
        )
    )
493 494 495
    renamed_vars[var_name] = [var_name]


496 497 498
def _accumulate_gradients_by_add_ops_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
499 500 501 502 503 504 505 506 507 508 509 510 511 512
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
513 514 515 516 517 518 519
            _create_op_desc_(
                "grad_add",
                {"X": [x_name], "Y": [y_name]},
                {"Out": [out_name]},
                {"use_mkldnn": False, "op_device": op_device},
            )
        )
520 521 522
    renamed_vars[var_name] = [var_name]


523 524 525
def _addup_repetitive_outputs_(
    op_descs, block_idx, grad_var_to_var=None, grad_op_id_to_fwd_op=None
):
526 527
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
528 529
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
530
    `sum_op`s are added to implement the accumulate.
531 532 533 534

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
535
    """
536

537
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
538
    # pending_sum_ops = []
539
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
540
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
541
    renamed_vars = collections.defaultdict(list)
542
    renamed_var_start_idx = collections.defaultdict(list)
543
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
544
    for idx, op_desc in enumerate(op_descs):
545 546
        op_device_attr_name = (
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
T
tangwei12 已提交
547 548 549 550
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
551
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
552 553
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
554
            if len(renamed_vars[var_name]) > 1:
555
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
556 557 558 559 560 561 562
                    _accumulate_gradients_by_sum_op_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
563
                else:
564 565 566 567 568 569 570
                    _accumulate_gradients_by_add_ops_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
571

F
update  
fengjiayi 已提交
572
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
573 574
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
575 576
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
577
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
578
                #    continue
579 580 581 582
                if (
                    var_name == core.empty_var_name()
                    or var_name in op_desc.input_arg_names()
                ):
F
fengjiayi 已提交
583 584 585 586 587
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
588
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
589 590
                else:
                    if len(renamed_vars[var_name]) == 1:
591 592 593 594 595 596 597
                        new_name = (
                            var_name
                            + "@RENAME@block"
                            + str(block_idx)
                            + "@"
                            + str(var_rename_count[var_name])
                        )
F
fengjiayi 已提交
598
                        var_rename_count[var_name] += 1
599 600 601 602
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
603 604
                                    var_name
                                ]
605 606
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
607 608
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
609 610 611 612
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
613 614 615 616 617 618 619
                        _rename_arg_(
                            op_descs,
                            var_name,
                            new_name,
                            renamed_var_start_idx[var_name],
                            idx,
                        )
F
fengjiayi 已提交
620 621
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
622 623 624
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
625 626 627 628 629 630 631
                                op_desc.set_output(
                                    p,
                                    [
                                        new_name if x == var_name else x
                                        for x in p_arg_names
                                    ],
                                )
F
update  
fengjiayi 已提交
632 633 634 635 636 637

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

638 639 640 641 642 643 644
                    new_name = (
                        var_name
                        + "@RENAME@block"
                        + str(block_idx)
                        + "@"
                        + str(var_rename_count[var_name])
                    )
F
fengjiayi 已提交
645
                    var_rename_count[var_name] += 1
646 647 648 649
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
650 651
                                var_name
                            ]
652 653
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
654 655 656
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
657
                    # record the latest device
658
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
659

660
    for var_name, inputs in renamed_vars.items():
661 662
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
663 664 665 666 667 668 669
                _accumulate_gradients_by_sum_op_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
670
            else:
671 672 673 674 675 676 677
                _accumulate_gradients_by_add_ops_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
678

679
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
680
    # sum_op descs are sorted according to their insert position
681
    for key, value in collections.OrderedDict(
682 683
        reversed(list(pending_sum_ops.items()))
    ).items():
684 685 686 687 688 689 690

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
691 692
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
693 694 695 696 697 698 699
            if (
                grad_op_id_to_fwd_op is not None
                and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None
                )
                is not None
            ):
700
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
701 702
                    op_descs[target_idx].original_id()
                ]
703
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
704 705 706 707

    return op_descs


708 709 710
def _remove_no_grad_branch_(
    op_descs, no_grad_set, grad_op_id_to_fwd_op=None, target_vars=[]
):
711 712 713 714
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
715
        2. all grad inputs of the grad op are in 'no_grad_set'
716
    NOTE: we will skip target_vars's grad name.
717
    """
F
fengjiayi 已提交
718 719

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
720 721
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
722
            return True
723 724 725 726
        if _all_in_set_(
            [
                name
                for name in op_desc.input_arg_names()
727
                if name.find(core.grad_var_suffix()) != -1
728 729 730
            ],
            no_grad_set,
        ):
731
            no_grad_set.update(set(out_arg_names) - target_grad_var_names)
F
fengjiayi 已提交
732 733 734
            return True
        return False

F
fengjiayi 已提交
735
    # Remove ops whose outputs are all in no_grad_dict
736
    target_grad_var_names = set(
737 738
        [var.name + core.grad_var_suffix() for var in target_vars]
    )
739
    op_descs = [
740 741
        op_desc
        for op_desc in op_descs
742 743
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
744
    # Insert fill_any_like_op with value 0
F
fengjiayi 已提交
745
    to_insert = []
F
fengjiayi 已提交
746
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
747
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
748
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
749
            if core.grad_var_suffix() in arg and arg in no_grad_set:
750
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
751 752
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
753 754 755 756 757 758
                new_op_desc = _create_op_desc_(
                    "fill_any_like",
                    {"X": [x_in]},
                    {"Out": [arg]},
                    {'value': 0, 'dtype': -1},
                )
759
                # update the mapping between fwd and bwd
760 761 762 763 764 765 766 767
                if (
                    grad_op_id_to_fwd_op is not None
                    and grad_op_id_to_fwd_op.get(op_desc.original_id(), None)
                    is not None
                ):
                    grad_op_id_to_fwd_op[
                        new_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
768
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
769

770
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
771 772 773 774

    return op_descs


C
chengduo 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
790
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
849 850 851
    forward_vars_set = (
        set() if input_grad_names_set is None else set(input_grad_names_set)
    )
C
chengduo 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
891 892 893
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
894
    # not_need_op_descs will be whole graph, this IF clause avoids it.
895 896 897
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
898 899


Y
Yang Yang 已提交
900 901
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
902
    proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang 已提交
903 904 905
    return proto.__str__()


906 907 908 909 910 911 912 913 914 915
def _append_backward_ops_with_checkpoints_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    checkpoints,
    grad_op_id_to_fwd_op=None,
):
M
mapingshuo 已提交
916 917 918 919 920 921
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
922
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
M
mapingshuo 已提交
923 924 925 926 927 928 929
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
930
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
931 932 933 934 935
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
936 937 938
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
939 940
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
941 942
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
943 944
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
945
    """
M
mapingshuo 已提交
946 947

    checkpoints_name = [x.name for x in checkpoints]
948
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
949 950
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
951
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
952
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
953
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
954
    program_stat.build_stats()
M
mapingshuo 已提交
955 956

    # 1) find ops between checkpoints, i.e. recompute_segments
957
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
958 959
    segments = []

960
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
961 962 963 964 965 966 967
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
968
            # only count the last generate op
M
mapingshuo 已提交
969 970 971 972 973 974
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
975
        pre_segment_end_idx = -1
M
mapingshuo 已提交
976 977 978
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
979 980
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
981
            flag, min_idx, max_idx = program_stat.is_subgraph(
982 983
                [checkpoints_name[start_idx]], [checkpoints_name[start_idx + 1]]
            )
M
mapingshuo 已提交
984
            if flag:
J
JZ-LIANG 已提交
985 986
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
987 988
                    min_idx, pre_segment_end_idx
                )
M
mapingshuo 已提交
989
                segments.append([min_idx, max_idx + 1])
990
            else:
991 992 993 994 995
                _logger.info(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
J
JZ-LIANG 已提交
996

M
mapingshuo 已提交
997 998 999 1000 1001 1002
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
1003

J
JZ-LIANG 已提交
1004
    for i, (idx1, idx2) in enumerate(recompute_segments):
1005
        _logger.info("recompute segment[{}]".format(i))
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
1016
        _logger.info("recompute segment[{}]".format(i))
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
J
JZ-LIANG 已提交
1027

M
mapingshuo 已提交
1028
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
1029
    vars_should_be_hold = []
1030
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
1031 1032
    for segment in recompute_segments:
        vars_should_be_hold.extend(
1033 1034
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1])
        )
J
JZ-LIANG 已提交
1035 1036

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
1037 1038 1039 1040 1041
    _logger.info(
        "found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format(
            len(cross_vars), cross_vars
        )
    )
J
JZ-LIANG 已提交
1042

M
mapingshuo 已提交
1043
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
1044
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
1045
    # c. input variables are checkpoints
M
mapingshuo 已提交
1046 1047 1048
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
1049
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
1050 1051 1052 1053 1054 1055
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
1056
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
1057 1058 1059 1060
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1061 1062 1063 1064 1065
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1066
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1067 1068
                op.desc, no_grad_dict[block.idx], []
            )
1069 1070 1071 1072 1073 1074

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1075 1076 1077 1078 1079
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1080 1081 1082
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1083 1084 1085 1086
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
1087
        gap_ops = ops[segment[1] : max_calculated_op_position]
M
mapingshuo 已提交
1088 1089 1090
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1091 1092 1093 1094 1095
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1096
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1097 1098
                op.desc, no_grad_dict[block.idx], []
            )
1099 1100 1101 1102 1103 1104

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1105 1106 1107 1108 1109
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1110 1111 1112
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1113 1114 1115
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

1116
        ff_ops = ops[segment[0] : segment[1]]
M
mapingshuo 已提交
1117 1118 1119 1120
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
1121 1122 1123 1124 1125
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1136 1137 1138

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1139 1140 1141 1142 1143 1144 1145 1146
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient,
                    )
1147

M
mapingshuo 已提交
1148
        # 3.a. add ops in current recompute_segment as forward recomputation ops
1149 1150 1151 1152 1153 1154
        buffer_descs = _add_needed_descs_to_block(
            ff_ops, buffer_block, block, vars_in_memory, grad_op_id_to_fwd_op
        )
        added_descs = _add_descs_to_block(
            ff_ops, local_block, grad_op_id_to_fwd_op
        )
M
mapingshuo 已提交
1155

M
mapingshuo 已提交
1156
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1157 1158 1159 1160 1161 1162
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1163
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1164 1165
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1166 1167
                op_desc, no_grad_dict[block.idx], []
            )
1168

1169 1170 1171
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
1172 1173 1174
                    grad_op_id_to_fwd_op[
                        g_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
1175

1176 1177 1178 1179 1180 1181
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1182 1183 1184 1185 1186
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1187
    # 3.d. add sum op for repetitive_outputs
1188
    grad_op_descs = _addup_repetitive_outputs_(
1189 1190
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op
    )
M
mapingshuo 已提交
1191
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
    added_descs = _add_descs_to_block(
        grad_op_descs, target_block, grad_op_id_to_fwd_op
    )
    return (
        program_stat,
        checkpoints_name,
        vars_should_be_hold,
        recompute_segments,
    )


def _get_sub_block_path(
    sub_block,
    sub_block_op_desc,
    no_grad_set,
    op_path_dict,
    sub_block_target_names=None,
):
1216 1217
    """
    Get output vars in subblock which will be assigned to parent block.
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1230
    """
1231

1232
    assert sub_block_op_desc.has_attr(
1233 1234
        "sub_block"
    ) and sub_block.idx == sub_block_op_desc._block_attr_id("sub_block")
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1247
            for op_desc in sub_block.ops:
1248
                if var in op_desc.output_arg_names:
1249
                    for name in op_desc.input_arg_names:
1250
                        sub_outputs.append(sub_block._var_recursive(name))
1251

1252 1253
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1254 1255 1256
        sub_block_op_path = _find_op_path_(
            sub_block, sub_outputs, [], no_grad_set, op_path_dict, is_while
        )
1257 1258 1259 1260
        return sub_block_op_path
    return sub_block.ops


1261 1262 1263
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
1264 1265 1266
    if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
        op.all_attrs()[op_maker.kOpRoleAttrName()]
    ) == int(backward):
1267 1268 1269 1270 1271 1272 1273 1274
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
def _append_backward_ops_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    callbacks=None,
    input_grad_names_set=None,
    op_path_dict=None,
    distop_context=None,
    rename_var_map=None,
    grad_op_id_to_fwd_op=None,
):
1289 1290 1291 1292 1293
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1294
        ops(Op): the forward operators whose backward ops need to be added
1295
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
1296
        target_block(Block): the block which is going to hold new generated grad ops
1297
        no_grad_dict(dict):
1298
            key(int)  block index
T
tianshuo78520a 已提交
1299
            val(set) a set of variable names. These variables have no gradient
1300 1301 1302
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1303 1304 1305 1306
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1307 1308 1309
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1310 1311
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1312
    """
1313 1314

    # Build the mapping between the forward op and backward op (Only for auto parallel)
1315 1316 1317
    def update_distop_context(
        distop_context, op_grad_to_var, appending_grad_times
    ):
1318
        distop_context.grad_var_to_var[appending_grad_times].update(
1319 1320
            op_grad_to_var
        )
1321
        for op_desc in grad_op_desc:
1322 1323 1324
            assert (
                op_desc.original_id() not in distop_context.grad_op_id_to_op_id
            )
1325
            distop_context.grad_op_id_to_op_id[
1326 1327
                op_desc.original_id()
            ] = op.desc.original_id()
1328

Y
Yang Yang 已提交
1329
    if callbacks is not None:
1330
        assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1331 1332 1333
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1334

F
fengjiayi 已提交
1335
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1336 1337
    grad_op_descs = []
    program = block.program
1338

1339 1340 1341
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1342

1343
    # add grad_op_desc by reversed ops
1344
    for op in reversed(ops):
F
fengjiayi 已提交
1345 1346 1347
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1348
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1349
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1350
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1351 1352 1353
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1354
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
            _append_backward_ops_(
                sub_block,
                sub_block_path,
                target_vars,
                grad_sub_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
                input_grad_names_set,
                op_path_dict,
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1367
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1368

W
Wu Yi 已提交
1369
            program._rollback()
F
fengjiayi 已提交
1370 1371
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1372
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1373
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1374 1375
            op.desc, no_grad_dict[block.idx], grad_sub_block_list
        )
1376

1377 1378 1379 1380 1381
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1382
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1383
        if distop_context is not None:
1384 1385 1386
            update_distop_context(
                distop_context, op_grad_to_var, program._appending_grad_times
            )
1387
        else:
1388 1389 1390 1391 1392
            default_ctx = getattr(
                paddle.distributed.auto_parallel.dist_context,
                '_g_default_distributed_context',
                None,
            )
1393 1394
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
1395 1396 1397 1398 1399
                update_distop_context(
                    distop_context,
                    op_grad_to_var,
                    program._appending_grad_times,
                )
Y
Yang Yu 已提交
1400

1401 1402
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1403 1404 1405 1406
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1418 1419 1420 1421
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1422 1423 1424 1425 1426
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
1427 1428
                            name, program._appending_grad_times
                        )
1429 1430 1431 1432
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1433 1434 1435
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
1436 1437
                                    program._appending_grad_times
                                ][new_name] = op_grad_to_var[name]
1438 1439 1440
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1441 1442 1443 1444 1445
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1446 1447 1448 1449
            is_grad_name = (
                lambda name: name.find(core.grad_var_suffix()) != -1
                or name in input_grad_names_set
            )
1450 1451 1452
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
1453 1454
                    name
                    for name in op_desc.input_arg_names()
1455
                    if is_grad_name(name)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1473

1474 1475 1476 1477
    # record mapping bewteen grad var name and var name (Only for auto parallel)
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
1478 1479
            program._appending_grad_times
        ]
M
mapingshuo 已提交
1480
    # sum parameter's gradients' var given multiple var gradient
1481 1482 1483 1484
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
1485 1486
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
    )
F
fengjiayi 已提交
1487

M
mapingshuo 已提交
1488 1489
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
1490 1491 1492 1493 1494 1495
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
F
fengjiayi 已提交
1496

M
mapingshuo 已提交
1497
    # remove some backward ops
C
chengduo 已提交
1498
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1499

C
chengduo 已提交
1500 1501 1502
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1503

F
fengjiayi 已提交
1504
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1505 1506
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1507
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1508 1509
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1510
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1511
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1512
        if callbacks is not None:
1513
            assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1514 1515
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1516

F
fengjiayi 已提交
1517

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
1530
    for block_id in range(program.num_blocks):
1531
        block_desc = program.block(block_id).desc
1532
        for op_idx in range(block_desc.op_size()):
1533
            op = block_desc.op(op_idx)
1534 1535 1536 1537
            if (
                op.has_attr("sub_block")
                and op._block_attr_id("sub_block") == sub_block_id
            ):
1538 1539
                return op

1540
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1541 1542 1543 1544
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1545
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1558
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1559
    """
1560 1561
    ops_to_remove = []
    '''
1562 1563 1564 1565 1566
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found
    in the parent/forward block, and they are also the outputs of while_grad
    op. These kinds of inputs are the recursive outputs inside while_grad op.
    They should be considered as "already created" when scanning the inner
    ops of while_grad ops.
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1577 1578 1579
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1580
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1581
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1582 1583 1584 1585 1586 1587 1588 1589 1590

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
1591 1592
            var
            for var in op_desc.input_arg_names()
1593 1594 1595
            if var != core.empty_var_name()
        ]
        outputs = [
1596 1597
            var
            for var in op_desc.output_arg_names()
1598 1599 1600
            if var != core.empty_var_name()
        ]

1601
        # If the outputs of grad op is empty, just remove it
1602 1603 1604 1605 1606
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
1607
            If the output is not empty and there is any grad input, find
1608 1609 1610 1611
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
1612 1613
                    var
                    for var in grad_var_ins
1614
                    if block.desc.has_var_recursive(var.encode())
1615
                    or var in parent_op_vars
1616 1617 1618 1619
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
1620 1621
                    in recurrent op. The input of this op does not even exist in
                    the program! Therefore, any dependency analysis would not
1622
                    work to this op! If I do not add the following code, this op
1623 1624
                    would be pruned, and the calculation result would be wrong.
                    Maybe we should re-design this op later...
1625 1626 1627
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1628
                        continue
1629

F
fengjiayi 已提交
1630 1631 1632
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
1633 1634 1635 1636
            if (
                block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
F
fengjiayi 已提交
1637
                continue
1638
            block.desc.var(grad_var_name.encode())
F
fengjiayi 已提交
1639
            new_vars.add(grad_var_name)
1640
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1641 1642 1643
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1644
        op_desc.check_attrs()
F
fengjiayi 已提交
1645 1646
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1647

F
fengjiayi 已提交
1648 1649
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1650
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1651

1652 1653 1654
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1655

1656 1657 1658 1659 1660 1661
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1662
                op_desc._rename_input(name, var_map[name])
1663 1664

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1665 1666
            if "@GRAD" not in name:
                continue
1667
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1668
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1669
                op_desc._rename_output(name, new_name)
1670 1671
                var_map[name] = new_name

1672
    for g, ng in var_map.items():
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1684
        for var in list(block.vars.values()):
1685 1686 1687 1688 1689 1690 1691
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1703 1704 1705 1706 1707 1708 1709
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
1710
                elif isinstance(no_grad_var, str):
1711 1712 1713 1714
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
1715 1716
                        % (type(no_grad_var))
                    )
1717 1718
        else:
            raise TypeError(
1719 1720 1721 1722
                "The type of no_grad_set should be set or list or tuple, but received {}".format(
                    type(no_grad_set)
                )
            )
1723 1724 1725
    return no_grad_set_name


1726
@framework.static_only
1727 1728 1729 1730 1731 1732 1733 1734
def append_backward(
    loss,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
1735
    """
1736 1737
    :api_attr: Static Graph

1738
    This function appends backward part to main_program.
F
fengjiayi 已提交
1739

1740 1741
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1742 1743
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1744

1745 1746
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1747

1748
    Parameters:
1749
        loss(Tensor): The loss Tensor of the network.
1750
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1751
                                           that need to be updated by optimizers.
1752
                                           If it is None, all parameters
F
fengjiayi 已提交
1753
                                           will be updated.
1754
                                           Default: None.
1755 1756
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1757
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1758
                               be automatically added into this set.
1759
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1760
                               Default: None.
1761
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1762
                                               The callbacks are used for
1763 1764 1765 1766 1767 1768
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1769
                                               object must have two input
1770 1771
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1772
                                               the new gradient operator will
1773
                                               be added to. The ``context`` is a
1774
                                               map, whose keys are gradient
1775 1776 1777
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1778
                                               has another special key-value pair:
1779
                                               the key is string ``__current_op_desc__``
1780 1781 1782
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1783
                                               Default: None.
F
fengjiayi 已提交
1784 1785

    Returns:
1786 1787
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1788 1789

    Raises:
1790
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1791 1792 1793 1794

    Examples:
        .. code-block:: python

1795 1796
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1797

1798 1799 1800 1801 1802
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1803
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1804 1805
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1806 1807

            # Get all weights in main_program, not include bias.
1808
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1809 1810 1811
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1812
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1813 1814
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1815 1816
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1817 1818 1819
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1820
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1821 1822
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1823 1824
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1825 1826
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1827 1828
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1829 1830 1831
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1832
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1833

1834
    """
1835 1836 1837
    grad_op_id_to_fwd_op = (
        {}
    )  # for cuda graph usage, recording the mapping between grad op original id to fwd op
1838

1839 1840 1841
    check_type(
        loss, 'loss', framework.Variable, 'paddle.static.append_backward'
    )
Y
yuyang18 已提交
1842

Y
Fix bug  
yuyang18 已提交
1843 1844
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1845
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1846

1847 1848 1849
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
1850 1851
        | int(core.op_proto_and_checker_maker.OpRole.Loss),
    )
Y
yuyang18 已提交
1852

Y
Yang Yang 已提交
1853
    if callbacks is not None:
1854 1855 1856 1857 1858 1859
        check_type(
            callbacks,
            'callbacks',
            (list, tuple),
            'paddle.static.append_backward',
        )
Y
Yu Yang 已提交
1860

F
fengjiayi 已提交
1861
    program = loss.block.program
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1872

F
fengjiayi 已提交
1873
    if no_grad_set is None:
1874
        no_grad_set = set()
1875 1876
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1877
    no_grad_dict = _get_stop_gradients_(program)
1878 1879
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1880
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1881

1882 1883 1884 1885 1886 1887 1888
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
1889 1890
            parent_idx=current_block.parent_idx
        )
1891 1892 1893 1894 1895 1896
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
1897 1898
        program, current_block_idx
    )
1899 1900 1901 1902

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1903

F
fengjiayi 已提交
1904 1905
    grad_to_var = dict()

1906
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
1907
    op_desc = _create_loss_op_desc_(loss)
1908
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
1909 1910 1911 1912 1913 1914
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
1915 1916
            map(_strip_grad_suffix_, no_grad_dict[block_idx])
        )
1917 1918

        op_path_dict = dict()
1919 1920 1921
        op_path = _find_op_path_(
            block, [loss], [], block_no_grad_set, op_path_dict
        )
1922

1923 1924 1925
        no_grad_vars = _find_no_grad_vars(
            block, op_path, [loss], block_no_grad_set
        )
1926 1927 1928

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
1929 1930
            list(map(_append_grad_suffix_, block_no_grad_set))
        )
1931 1932 1933 1934 1935

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1936
        # TODO(liym27): need a better design.
1937 1938 1939 1940 1941
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1942
        # TODO: support _append_backward_ops_with_checkpoints_ in
1943
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1944
        is_recompute = False
1945 1946 1947 1948 1949
        if (
            checkpoints != None
            and isinstance(checkpoints, list)
            and len(checkpoints) > 0
        ):
J
JZ-LIANG 已提交
1950
            is_recompute = True
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
            (
                program_stat,
                checkpoint_names,
                vars_should_be_hold,
                recompute_segments,
            ) = _append_backward_ops_with_checkpoints_(
                root_block,
                op_path,
                [loss],
                root_block,
                no_grad_dict,
                grad_to_var,
                checkpoints,
                grad_op_id_to_fwd_op,
            )
1966 1967 1968 1969
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
1970
                [loss],
1971 1972 1973 1974
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1975
                input_grad_names_set=input_grad_names_set,
1976
                op_path_dict=op_path_dict,
1977
                distop_context=distop_context,
1978 1979
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1980 1981 1982 1983 1984

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
1985 1986 1987 1988 1989
    fwd_op_num = (
        block_fwd_op_num_dict[current_block_idx]
        if not is_in_control_flow
        else 0
    )
1990 1991

    # Because append_backward may be called multiple times,
1992 1993
    # we need rename the internal gradient variables so that they have
    # different names.
1994
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1995

1996 1997 1998
    _append_backward_vars_(
        target_grad_block, fwd_op_num, grad_to_var, grad_info_map
    )
F
fengjiayi 已提交
1999

F
fengjiayi 已提交
2000
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
2001
    program._sync_with_cpp()
F
fengjiayi 已提交
2002

2003 2004 2005 2006 2007 2008
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

2009
    if parameter_list is not None:
2010 2011 2012 2013 2014 2015
        check_type(
            parameter_list,
            'parameter_list',
            (list, tuple, set),
            'fluid.backward.append_backward',
        )
2016 2017
        parameters = []
        for i, param in enumerate(parameter_list):
2018 2019 2020 2021 2022 2023
            check_type(
                param,
                'parameter_list[%s]' % i,
                (framework.Variable, str),
                'fluid.backward.append_backward',
            )
2024 2025
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
2026
            elif isinstance(param, str):
2027
                parameters.append(param)
2028
    else:
F
fengjiayi 已提交
2029
        params = program.global_block().all_parameters()
C
chengduo 已提交
2030
        parameters = [param.name for param in params if param.trainable]
2031

2032
    params_and_grads = []
2033
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
2034
    for param in parameters:
2035
        if param not in grad_info_map:
F
fengjiayi 已提交
2036
            continue
F
update  
fengjiayi 已提交
2037
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
2038
        grad_block = grad_info[1]
2039
        if not grad_block.has_var(grad_info[0]):
2040 2041 2042 2043 2044
            raise ValueError(
                "grad block[{0}] did not have grad var {1}".format(
                    grad_info[1], grad_info[0]
                )
            )
2045
        # Get the param var from the global block
F
fengjiayi 已提交
2046
        param_var = program.global_block().var(param)
2047
        grad_var = grad_block.var(grad_info[0])
2048 2049 2050 2051 2052
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
2053
        else:
2054
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
2055 2056 2057 2058

    for p, g in params_and_grads:
        if g is None:
            continue
2059 2060 2061
        ops = (
            grad_block.ops if is_in_control_flow else program.global_block().ops
        )
2062
        for op in reversed(ops):
Y
yuyang18 已提交
2063 2064 2065 2066 2067 2068 2069
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
2070
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
2071 2072
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
2073
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
2074

J
JZ-LIANG 已提交
2075 2076 2077 2078
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
2079 2080 2081 2082 2083


def _as_list(x):
    if x is None:
        return []
2084
    return list(x) if isinstance(x, Sequence) else [x]
2085 2086


2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

2113 2114 2115 2116 2117 2118
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
2119 2120 2121 2122 2123 2124 2125 2126 2127
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
2128 2129 2130
                    if not block.desc.find_var(
                        name.encode()
                    ) and parent_block.desc.find_var(name.encode()):
2131 2132 2133 2134 2135 2136 2137 2138
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


2139 2140 2141
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
2142
    those vars belong to no_grad_var.
2143
    """
2144
    output_names = _get_output_names(block, targets)
2145 2146 2147 2148 2149
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
2150 2151 2152 2153 2154
                if (
                    out_var not in output_names
                    and out_var not in op.desc.input_arg_names()
                    and not block.vars[out_var].stop_gradient
                ):
2155 2156 2157 2158 2159 2160 2161
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


2162 2163 2164
def _find_op_path_(
    block, targets, inputs, no_grad_set, op_path_dict=None, is_while=False
):
2165
    """
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
2179
    """
2180

2181
    input_names = set([inp.name for inp in inputs])
2182 2183 2184
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
2185 2186 2187 2188 2189 2190

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
2191 2192 2193
            if _some_in_set_(
                op.desc.input_arg_names(), input_names
            ) and core.has_non_empty_grad_op_maker(op.type):
2194 2195 2196 2197 2198 2199 2200
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
2201 2202 2203 2204
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
2205 2206 2207
            sub_block_path = _get_sub_block_path(
                sub_block, op, set(), op_path_dict, sub_block_target_names
            )
2208 2209
            op_path_dict[sub_block_id] = sub_block_path

2210 2211 2212
        if _some_in_set_(
            op.desc.output_arg_names(), output_names
        ) and core.has_non_empty_grad_op_maker(op.type):
2213 2214 2215 2216 2217 2218
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2219 2220 2221 2222
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
2223 2224 2225
            if relevant_op_flags[i] == False and _some_in_set_(
                op.desc.output_arg_names(), output_names
            ):
2226 2227
                relevant_op_flags[i] = True

2228 2229 2230 2231 2232 2233 2234
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2235
                if name not in input_names and block.vars[name].stop_gradient:
2236 2237 2238 2239 2240 2241 2242
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
2243
    Backpropagate the gradients of targets to inputs.
2244 2245

    Args:
2246 2247 2248
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
2249 2250
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2251 2252
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
2253 2254
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
2255
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
2256
                               Default: None.
2257 2258

    Return:
2259 2260
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2261 2262 2263 2264 2265 2266 2267 2268
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2269 2270
    # increase appending gradients times
    prog._appending_grad_times += 1
2271 2272 2273 2274 2275 2276 2277
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
2278 2279
            "Should have the same number of target_gradients as targets"
        )
2280 2281 2282

    if no_grad_set is None:
        no_grad_set = set()
2283 2284
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2285
    no_grad_dict = _get_stop_gradients_(prog)
2286
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2287 2288 2289

    fwd_op_num = block.desc.op_size()

2290 2291
    input_grad_names_set = set()

2292
    target_grad_map = {}
2293
    rename_var_map = {}
2294 2295
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2296
        grad_name = _append_grad_suffix_(target.name)
2297
        if grad is None:
L
lvmengsi 已提交
2298 2299
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
2300 2301 2302 2303 2304 2305 2306
                _create_op_desc_(
                    "shape",
                    {'Input': [target.name]},
                    {"Out": [target_shape]},
                    {},
                )
            )
L
lvmengsi 已提交
2307
            input_grad_names_set.add(target_shape)
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
            op_desc = _create_op_desc_(
                "fill_constant",
                {"ShapeTensor": [target_shape]},
                {"Out": [grad_name]},
                {
                    "shape": target.shape,
                    "value": 1.0,
                    "dtype": target.dtype,
                },
            )
L
liym27 已提交
2318

2319
            block.desc.append_op().copy_from(op_desc)
2320
            input_grad_names_set.add(grad_name)
2321 2322 2323 2324 2325
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2326 2327 2328
                    "The shapes of target and grad are different: %s %s"
                    % (target.name, grad.name)
                )
2329
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2330
            input_grad_names_set.add(grad.name)
2331
            rename_var_map[grad_name] = grad.name
2332 2333

    # For double backward, input_grad_names is used for filter
2334 2335
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2336 2337
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2338
        rename_var_map = {}
2339 2340 2341 2342 2343 2344

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2345 2346

    op_path_dict = dict()
2347 2348 2349
    op_path = _find_op_path_(
        block, targets, inputs, block_no_grad_set, op_path_dict
    )
2350 2351

    # find no grad var by op_path
2352 2353 2354
    no_grad_vars = _find_no_grad_vars(
        block, op_path, targets, block_no_grad_set
    )
2355 2356
    block_no_grad_set.update(no_grad_vars)

2357
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2358 2359
    grad_to_var = dict()
    grad_info_map = dict()
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
    _append_backward_ops_(
        block,
        op_path,
        targets,
        block,
        no_grad_dict,
        grad_to_var,
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict,
        rename_var_map=rename_var_map,
    )
2371 2372 2373 2374 2375 2376 2377

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2378
    prog._sync_with_cpp()
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2394 2395


2396
@framework.static_only
2397 2398
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2399

2400 2401 2402
    Backpropagate the gradients of targets to inputs.

    Args:
2403 2404 2405
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2406 2407
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2408 2409 2410
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2411
            in this set will be added to the default set. Default: None.
2412 2413

    Return:
2414 2415
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2416 2417 2418
        will be None.

    Examples:
2419

2420
        .. code-block:: python
2421
          :name: code-example
2422 2423 2424 2425
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2426

2427
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2428
            x.stop_gradient=False
2429 2430 2431
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2432
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2433
    """
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
    check_type(
        targets,
        'targets',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        inputs,
        'inputs',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        target_gradients,
        'target_gradients',
        (framework.Variable, list, tuple, type(None)),
        'paddle.static.gradients',
    )
2452 2453
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
    check_type(
        program,
        'program',
        paddle.fluid.Program,
        'paddle.static.gradients_with_optimizer',
    )
    check_type(
        optimizer,
        'optimizer',
        paddle.optimizer.Optimizer,
        'paddle.static.gradients_with_optimizer',
    )
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
2524 2525 2526 2527 2528 2529
        pram_grads = [
            (pram, grad)
            for pram, grad in zip(inputs, grads)
            if isinstance(pram, paddle.fluid.framework.Parameter)
            and grad is not None
        ]
2530 2531 2532 2533

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads