Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6bb4a6fd
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6bb4a6fd
编写于
12月 19, 2017
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
b3ea677a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
72 addition
and
14 deletion
+72
-14
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+13
-3
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+1
-0
python/paddle/v2/fluid/backward.py
python/paddle/v2/fluid/backward.py
+58
-11
未找到文件。
paddle/pybind/protobuf.cc
浏览文件 @
6bb4a6fd
...
...
@@ -236,15 +236,25 @@ void BindOpDesc(py::module &m) {
.
value
(
"BLOCK"
,
AttrType
::
BLOCK
);
py
::
class_
<
OpDescBind
>
op_desc
(
m
,
"OpDesc"
,
""
);
op_desc
.
def
(
"type"
,
&
OpDescBind
::
Type
)
op_desc
.
def
(
"__init__"
,
[](
OpDescBind
&
self
,
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
{
new
(
&
self
)
OpDescBind
(
type
,
inputs
,
outputs
,
attrs
);
})
.
def
(
"type"
,
&
OpDescBind
::
Type
)
.
def
(
"set_type"
,
&
OpDescBind
::
SetType
)
.
def
(
"input"
,
&
OpDescBind
::
Input
)
.
def
(
"input_names"
,
&
OpDescBind
::
InputNames
)
.
def
(
"set_input"
,
&
OpDescBind
::
SetInput
)
.
def
(
"output"
,
&
OpDescBind
::
Output
)
.
def
(
"output_names"
,
&
OpDescBind
::
OutputNames
)
.
def
(
"
output_arg_names"
,
&
OpDescBind
::
OutputArgumentNames
)
.
def
(
"
set_input"
,
&
OpDescBind
::
SetInput
)
.
def
(
"set_output"
,
&
OpDescBind
::
SetOutput
)
.
def
(
"input_arg_names"
,
&
OpDescBind
::
InputArgumentNames
)
.
def
(
"output_arg_names"
,
&
OpDescBind
::
OutputArgumentNames
)
.
def
(
"rename_input"
,
&
OpDescBind
::
RenameInput
)
.
def
(
"rename_output"
,
&
OpDescBind
::
RenameOutput
)
.
def
(
"has_attr"
,
&
OpDescBind
::
HasAttr
)
.
def
(
"attr_type"
,
&
OpDescBind
::
GetAttrType
)
.
def
(
"attr_names"
,
&
OpDescBind
::
AttrNames
)
...
...
paddle/pybind/pybind.cc
浏览文件 @
6bb4a6fd
...
...
@@ -314,6 +314,7 @@ All parameter, weight, gradient are variables in Paddle.
InferenceOptimize
(
*
(
origin
.
Proto
()),
&
pruned_desc
);
return
new
ProgramDescBind
(
pruned_desc
);
});
m
.
def
(
"get_empty_var_name"
,
[]()
{
return
framework
::
kEmptyVarName
;
});
m
.
def_submodule
(
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
...
...
python/paddle/v2/fluid/backward.py
浏览文件 @
6bb4a6fd
...
...
@@ -5,8 +5,19 @@ import collections
__all__
=
[
'append_backward_ops'
]
def
backward_impl
(
block
,
target_block
,
no_grad_set
,
grad_to_var
,
callback
):
def
rename_arg
(
op_desc_list
,
old_name
,
new_name
,
begin_idx
=
None
,
end_idx
=
None
):
if
begin_idx
is
None
:
begin_idx
=
0
if
end_idx
is
None
:
end_idx
=
len
(
op_desc_list
)
for
i
in
range
(
begin_idx
,
end_idx
):
op_desc_list
[
i
].
rename_input
(
old_name
,
new_name
)
op_desc_list
[
i
].
rename_output
(
old_name
,
new_name
)
def
backward_impl
(
block
,
target_block
,
no_grad_set
,
callback
=
None
):
grad_op_descs
=
[]
grad_to_var
=
{}
program
=
block
.
program
for
each_op
in
block
.
ops
:
grad_sub_block_list
=
[]
...
...
@@ -14,8 +25,7 @@ def backward_impl(block, target_block, no_grad_set, grad_to_var, callback):
sub_block_idx
=
each_op
.
block_attr
(
"sub_block"
)
sub_block
=
program
.
block
(
sub_block_idx
)
grad_sub_block
=
program
.
create_block
(
parent_idx
=
sub_block_idx
)
backward_impl
(
sub_block
,
grad_sub_block
,
no_grad_set
,
grad_to_var
,
callback
)
backward_impl
(
sub_block
,
grad_sub_block
,
no_grad_set
,
callback
)
grad_sub_block_list
.
append
(
grad_sub_block
)
grad_op_desc
=
core
.
get_grad_op_desc
(
each_op
.
desc
,
no_grad_set
[
block
.
idx
],
...
...
@@ -25,16 +35,53 @@ def backward_impl(block, target_block, no_grad_set, grad_to_var, callback):
# flatten grad_op_descs
grad_op_descs
=
[
op
for
sublist
in
grad_op_descs
for
op
in
sublist
]
# ?????
output_vars
=
collections
.
defaultdict
(
list
)
pending_sum_ops
=
[]
var_rename_count
=
collections
.
defaultdict
(
int
)
var_inputs
=
collections
.
defaultdict
(
list
)
for
pos
,
op_desc
in
enumerate
(
grad_op_descs
):
for
var_name
in
op_desc
.
input_arg_names
():
if
len
(
var_inputs
[
var_name
])
>
1
:
pending_sum_ops
.
append
((
core
.
OpDesc
(
type
=
"sum_op"
,
inputs
=
var_inputs
[
var_name
],
output
=
[
var_name
],
attrs
=
{}),
pos
))
var_inputs
[
var_name
]
=
[
var_name
]
for
var_name
in
op_desc
.
output_arg_names
():
output_vars
[
var_name
].
append
(
pos
)
for
var_name
,
poses
in
output_vars
.
iteritems
():
if
len
(
poses
)
==
1
:
continue
renamed_list
=
[]
for
pos
in
reversed
(
sorted
(
poses
)):
new_name
=
var_name
+
"@RENAMED@"
+
len
(
renamed_list
)
if
len
(
var_inputs
[
var_name
])
==
0
:
# it's the first time we get the variable
var_inputs
[
var_name
]
=
var_name
else
:
if
len
(
var_inputs
[
var_name
]
==
1
):
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
=
var_rename_count
[
var_name
]
+
1
# rename original var_name
var_inputs
[
var_name
][
0
]
=
new_name
rename_arg
(
grad_op_descs
,
var_name
,
new_name
,
0
,
pos
)
rename_arg
(
pending_sum_ops
,
var_name
,
new_name
)
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
=
var_rename_count
[
var_name
]
+
1
op_desc
.
rename_output
(
var_name
,
new_name
)
var_inputs
[
var_name
].
append
(
new_name
)
for
var_name
,
inputs
in
var_inputs
.
iteritems
():
if
len
(
inputs
)
>
1
:
pending_sum_ops
.
append
((
core
.
OpDesc
(
type
=
"sum_op"
,
inputs
=
inputs
,
outputs
=
var_name
,
attrs
=
{}),
len
(
grad_op_descs
)))
# 根据append的顺序可以看出pending_sum_ops一定是根据sum_op的插入位置排序的
for
p
in
reversed
(
pending_sum_ops
):
grad_op_descs
.
insert
(
p
[
1
],
p
[
0
])
# create new gradient variables in the target block
for
op_desc
in
grad_op_descs
:
for
grad_var_name
in
op_desc
.
output_arg_names
():
if
target_block
.
has_var
(
grad_var_name
)
or
grad_var_name
==
core
.
get_empty_var_name
(
):
continue
target_block
.
var
(
grad_var_name
)
def
append_backward_ops
(
loss
,
parameter_list
=
None
,
no_grad_set
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录