backward.py 23.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
16
from . import core
F
update  
fengjiayi 已提交
17
import collections
18
import copy
Y
Yu Yang 已提交
19
import unique_name
20

21 22 23 24
__all__ = [
    'append_backward',
    'calc_gradient',
]
25 26


27 28
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
29
    Traverse all ops in op_descs[begin_idx : end_idx],
30 31
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
32 33 34
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
35
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
36
    for i in range(begin_idx, end_idx):
37
        op_desc = op_descs[i]
F
fengjiayi 已提交
38 39 40 41
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc.rename_input(old_name, new_name)
        op_desc.rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
42 43


F
fengjiayi 已提交
44
def _create_op_desc_(op_type, inputs, outputs, attrs):
45 46 47
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
    for para, args in inputs.iteritems():
        op_desc.set_input(para, args)
    for para, args in outputs.iteritems():
        op_desc.set_output(para, args)
    for name, val in attrs.iteritems():
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
            op_desc.set_attr(name, val)
    return op_desc


62 63 64 65 66 67
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
    grad_var = block.desc.find_var(grad_var_name.encode("ascii"))
    fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii"))
F
fengjiayi 已提交
68 69 70 71
    if block.desc.has_var_recursive(fwd_name):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii"))
        grad_var.set_dtype(fwd_var.dtype())
    else:
72
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
73 74


F
fengjiayi 已提交
75
def _all_in_set_(cands, s):
76 77 78
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
79 80
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
81 82 83 84 85 86
    for c in cands:
        if not c in s:
            return False
    return True


87 88 89 90 91 92 93 94 95 96 97 98
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
    for c in cands:
        if c in s:
            return True
    return False


F
fengjiayi 已提交
99
def _strip_grad_suffix_(name):
100 101 102 103 104
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
F
fengjiayi 已提交
105 106
    pos = name.find(core.grad_var_suffix())
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
107 108 109


def _append_grad_suffix_(name):
110 111 112 113
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
F
fengjiayi 已提交
114 115 116
    return name + core.grad_var_suffix()


F
fengjiayi 已提交
117
def _addup_repetitive_outputs_(op_descs):
118 119 120 121 122
    """
    In backward part, an variable may be the output of more than one ops.
    In this case, the variable should be the accumulation of all the outputs.
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
123 124
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
125 126
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
127
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
128 129 130 131 132
            if len(renamed_vars[var_name]) > 1:
                pending_sum_ops.append(
                    (_create_op_desc_("sum", {"X": renamed_vars[var_name]},
                                      {"Out": [var_name]}, {}), idx))
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
133
        for var_name in op_desc.output_arg_names():
F
fengjiayi 已提交
134 135 136
            if var_name == core.empty_var_name(
            ) or var_name in op_desc.input_arg_names():
                # empty variable or inplace op
F
fengjiayi 已提交
137
                continue
F
fengjiayi 已提交
138
            if len(renamed_vars[var_name]) == 0:
F
update  
fengjiayi 已提交
139
                # it's the first time we get the variable
F
fengjiayi 已提交
140
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
141
            else:
F
fengjiayi 已提交
142
                if len(renamed_vars[var_name]) == 1:
F
update  
fengjiayi 已提交
143 144
                    new_name = var_name + "@RENAME@" + \
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
145
                    var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
146
                    # rename original var_name
F
fengjiayi 已提交
147 148
                    renamed_vars[var_name][0] = new_name
                    _rename_arg_(op_descs, var_name, new_name, 0, idx)
F
fengjiayi 已提交
149
                    _rename_arg_(pending_sum_ops, var_name, new_name)
F
update  
fengjiayi 已提交
150 151 152

                new_name = var_name + "@RENAME@" + \
                    str(var_rename_count[var_name])
F
fengjiayi 已提交
153
                var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
154
                op_desc.rename_output(var_name, new_name)
F
fengjiayi 已提交
155 156
                renamed_vars[var_name].append(new_name)
    for var_name, inputs in renamed_vars.iteritems():
F
update  
fengjiayi 已提交
157
        if len(inputs) > 1:
F
fengjiayi 已提交
158
            pending_sum_ops.append((_create_op_desc_(
F
fengjiayi 已提交
159
                "sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs)))
F
fengjiayi 已提交
160
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
161
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
162 163 164 165 166 167
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
168 169 170 171
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
172
        2. all grad inputs of the grad op are in 'no_grad_set'
173
    """
F
fengjiayi 已提交
174 175

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
176 177
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
178 179 180 181
            return True
        if _all_in_set_(
                filter(lambda name: name.find(core.grad_var_suffix()) != -1,
                       op_desc.input_arg_names()), no_grad_set):
F
fengjiayi 已提交
182
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
183 184 185
            return True
        return False

F
fengjiayi 已提交
186 187
    # Remove ops whose outputs are all in no_grad_dict
    op_descs = filter(
F
fengjiayi 已提交
188
        lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs)
F
fengjiayi 已提交
189 190
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
191
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
192
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
193 194 195
            if core.grad_var_suffix() in arg and arg in no_grad_set:
                to_insert.append((_create_op_desc_("fill_zeros_like", {
                    "X": [_strip_grad_suffix_(arg)]
196
                }, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
197 198 199 200 201 202

    map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert))

    return op_descs


Y
Yang Yang 已提交
203 204 205 206 207 208 209 210 211
import proto.framework_pb2 as framework_pb2


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
    proto = framework_pb2.OpDesc.FromString(str(protostr))
    return proto.__str__()


212 213 214 215 216 217 218 219 220 221
def _callback_lookup_(op):
    """
    Only used in _append_backward_ops_
    Build and returns a callback function for certain op. For example

    parallel_do:           AllReduce

    :param op:
    :return: callback function
    """
Y
Yang Yang 已提交
222
    if op.type == 'parallel_do' and op.attr('use_nccl'):
Q
qiaolongfei 已提交
223
        all_vars = op.block.vars
224
        param_names = set(op.input('parameters'))
Q
qiaolongfei 已提交
225 226
        param_names = filter(lambda name: all_vars[name].stop_gradient is False,
                             param_names)
227 228 229
        param_grad_names = [n + "@GRAD" for n in param_names]

        class ParallelDoCallBack(object):
Y
Yang Yang 已提交
230
            def __init__(self, param_grad_names, parallel_scopes_name):
231 232
                self.has_inserted_nccl_init = False
                self.param_grad_names = param_grad_names
Y
Yang Yang 已提交
233
                self.parallel_scopes_name = parallel_scopes_name
234 235

            def __call__(self, block, context):
Y
Yang Yang 已提交
236
                if not self.has_inserted_nccl_init:
Y
Yang Yang 已提交
237
                    op_desc = _create_op_desc_(
Y
Yang Yang 已提交
238 239
                        "ncclInit",
                        {"parallel_scopes": self.parallel_scopes_name},
Y
Yang Yang 已提交
240 241 242
                        {"Communicator": ['nccl_com__do_not_change_']}, {})
                    block.program.global_block().desc.append_op().copy_from(
                        op_desc)
Y
Yang Yang 已提交
243 244 245 246 247
                    self.has_inserted_nccl_init = True

                current_op_desc = context["__current_op_desc__"]
                for o_param in current_op_desc.output_names():
                    for o_argu in current_op_desc.output(o_param):
248
                        if o_argu in self.param_grad_names:
Y
Yang Yang 已提交
249 250 251 252
                            allreduce_out_name = o_argu + "__nccl_all_reduce__"
                            op_desc = _create_op_desc_(
                                "ncclAllReduce", {
                                    "X": [o_argu],
Y
Yang Yang 已提交
253 254
                                    "Communicator":
                                    ['nccl_com__do_not_change_']
Y
Yang Yang 已提交
255 256 257 258 259 260 261 262
                                }, {"Out": [allreduce_out_name]},
                                {"reduction": "ncclSum"})
                            block.desc.append_op().copy_from(op_desc)

                            op_desc = _create_op_desc_(
                                "assign", {"X": [allreduce_out_name]},
                                {"Out": [o_argu]}, {})
                            block.desc.append_op().copy_from(op_desc)
263

Y
Yang Yang 已提交
264 265
        return ParallelDoCallBack(param_grad_names,
                                  op.output("parallel_scopes"))
266 267 268 269
    else:
        return None


270 271
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
272 273 274
                          target_block,
                          no_grad_dict,
                          grad_to_var,
Y
Yang Yang 已提交
275
                          callbacks=None):
276 277 278 279 280
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
281
        ops(Op): the forward operators whose backward ops need to be added
282
        target_block(Block): the block which is going to hold new generated grad ops
283
        no_grad_dict(dict):
284 285 286 287 288
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
289
        callback(callable object): a callable object used to decorate new generated grad ops
290
    """
Y
Yang Yang 已提交
291
    if callbacks is not None:
Y
Yang Yang 已提交
292 293 294 295
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
296

F
fengjiayi 已提交
297
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
298 299
    grad_op_descs = []
    program = block.program
300
    for op in reversed(ops):
F
fengjiayi 已提交
301 302 303 304
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
            sub_block = program.block(op.block_attr("sub_block"))
Y
Yu Yang 已提交
305 306
            grad_sub_block = program.create_block()
            grad_sub_block.set_forward_block_idx(sub_block.idx)
Y
Yang Yang 已提交
307 308 309 310 311 312 313 314
            cb = _callback_lookup_(op)
            if cb is not None:
                if callbacks is None:
                    new_callbacks = [cb]
                else:
                    new_callbacks = callbacks + [_callback_lookup_(op)]
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, new_callbacks)
Y
Yang Yang 已提交
315
            else:
Y
Yang Yang 已提交
316 317
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, callbacks)
Y
Yu Yang 已提交
318 319

            program.rollback()
F
fengjiayi 已提交
320 321
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
322
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
323 324
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            op.desc, no_grad_dict[block.idx], grad_sub_block_list)
Y
Yang Yu 已提交
325

F
fengjiayi 已提交
326 327 328 329 330 331 332
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
333

F
fengjiayi 已提交
334
    # append op_desc in grad_op_descs to target_block
F
update  
fengjiayi 已提交
335
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
336 337
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
Y
Yang Yang 已提交
338
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
339 340 341 342
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
343

F
fengjiayi 已提交
344 345

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
346 347 348 349 350 351 352 353 354 355 356 357
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
358
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
359
    """
F
fengjiayi 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
            sub_block = block.program.block(op_desc.block_attr("sub_block"))
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
            grad_var_name = grad_var_name.encode("ascii")
            if block.desc.has_var_recursive(
                    grad_var_name) or grad_var_name == core.empty_var_name():
                continue
            block.desc.var(grad_var_name)
            new_vars.add(grad_var_name)
            if not grad_to_var.has_key(grad_var_name):
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
Y
Yang Yang 已提交
380 381 382
        # ncclInit dones't need to set data_type
        if op_desc.type() == 'ncclInit':
            continue
F
fengjiayi 已提交
383 384 385
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
386 387


388 389 390 391 392 393 394 395 396 397
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
                op_desc.rename_input(name, var_map[name])

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
398
                new_name = unique_name.generate(name)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
                op_desc.rename_output(name, new_name)
                var_map[name] = new_name

    for g, ng in var_map.iteritems():
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
        for var in block.vars.itervalues():
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


Y
Yang Yang 已提交
422 423
def append_backward(loss, parameter_list=None, no_grad_set=None,
                    callbacks=None):
424
    """
F
fengjiayi 已提交
425 426 427 428
    Append backward part to main_program

    Args:
        loss(Variable): The variable generated by cost function.
429 430
        parameter_list(list[string]): Parameters that need to be updated by
            optimizer. If None, it means all parameters need to be updated.
431
        no_grad_set(set): Variables that have no gradients in Block 0.
432 433
            All variables with `step_gradient=True` from all blocks will be
            automatically added.
F
fengjiayi 已提交
434 435

    Return:
436
        (list[(Variable,Variable)]): list of (parameter, gradient) pair.
437 438
    """
    assert isinstance(loss, framework.Variable)
Y
Yang Yang 已提交
439 440
    if callbacks is not None:
        isinstance(callbacks, list)
Y
Yu Yang 已提交
441

F
fengjiayi 已提交
442
    program = loss.block.program
F
fengjiayi 已提交
443
    if no_grad_set is None:
444 445 446 447
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
Y
Yu Yang 已提交
448

F
update  
fengjiayi 已提交
449
    grad_info_map = dict()
F
fengjiayi 已提交
450
    root_block = program.block(0)
F
fengjiayi 已提交
451

F
fengjiayi 已提交
452 453
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
454 455
    grad_to_var = dict()

456 457 458 459 460 461 462 463 464 465 466 467
    op_desc = _create_op_desc_("fill_constant", {}, {
        "Out": [_append_grad_suffix_(loss.name)]
    }, {"shape": [1],
        "value": 1.0,
        "dtype": loss.dtype})
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
Y
Yang Yang 已提交
468
                          grad_to_var, callbacks)
469 470 471 472 473 474

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
475
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
476

F
fengjiayi 已提交
477 478
    program.current_block_idx = current_block_idx
    program.sync_with_cpp()
F
fengjiayi 已提交
479

480 481 482
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
483
        params = program.global_block().all_parameters()
484
        parameters = [param.name for param in params]
485

486 487
    params_and_grads = []
    for param in parameters:
F
update  
fengjiayi 已提交
488
        if param not in grad_info_map:
489
            raise ValueError("param %s is not in map" % param)
F
update  
fengjiayi 已提交
490
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
491
        grad_block = grad_info[1]
492 493 494 495
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
496
        param_var = program.global_block().var(param)
497 498 499 500 501 502
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
    return params_and_grads
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
                if name not in input_names:
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
    prog.sync_with_cpp()

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars