backward.py 95.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from .proto import framework_pb2
16

17
from paddle.fluid import framework as framework
18
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
29
import warnings
30 31 32 33
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
34

M
mapingshuo 已提交
35 36 37 38 39
__all__ = [
    'append_backward',
    'gradients',
]

40 41 42
_logger = log_helper.get_logger(__name__,
                                logging.INFO,
                                fmt='%(asctime)s-%(levelname)s: %(message)s')
43

M
mapingshuo 已提交
44 45

class ProgramStats(object):
46

M
mapingshuo 已提交
47 48 49 50 51 52 53 54 55
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
56
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
57
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
58 59 60 61 62 63 64 65 66 67 68
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
69
            if op.desc.type() == "seed":
M
mapingshuo 已提交
70 71 72 73 74 75 76 77 78 79 80
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
81 82 83 84 85
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
110

M
mapingshuo 已提交
111 112
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
126 127 128
                _logger.info("found amp-cast op: {}, : {}".format(
                    self.ops[idx_].desc.type(),
                    self.ops[idx_].desc.input_arg_names()[0]))
J
JZ-LIANG 已提交
129 130 131 132 133 134 135
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
136 137 138 139 140
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
141 142
                    self.op_deps[i]["in_ops"].extend(
                        self.var_op_deps[name]["var_as_output_ops"])
M
mapingshuo 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

162 163 164 165
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
166
                _logger.info(
167 168 169 170 171 172 173 174 175 176 177
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
178 179 180 181 182 183
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
184
        while op_idx < len(self.ops):
M
mapingshuo 已提交
185 186 187 188
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
189 190 191 192
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
193 194 195 196 197 198 199 200 201 202 203
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
204 205 206 207 208 209 210

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

211
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
212
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
213 214 215 216 217 218 219 220 221
            added_op = self.block._insert_op(index=op.idx,
                                             type='seed',
                                             inputs={},
                                             outputs={'Out': [added_var]},
                                             attrs={
                                                 'seed': seed,
                                                 'op_device': op_device,
                                                 'force_cpu': True
                                             })
M
mapingshuo 已提交
222 223 224 225 226 227 228 229
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
230 231 232 233 234 235 236 237

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


238 239 240 241 242
def _add_needed_descs_to_block(descs,
                               block,
                               main_block,
                               in_memory_vars,
                               grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
243 244 245 246
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
247
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
248 249
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
250 251
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
252 253
        if isinstance(desc, framework.Operator):
            desc = desc.desc
254
            origin_is_operator = True
M
mapingshuo 已提交
255 256 257 258 259 260 261 262 263
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
264 265
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
266 267 268
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
269 270
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
271 272 273 274
            result_descs.append(new_op_desc)
    return result_descs


275
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
276 277 278 279 280 281 282 283
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
284 285 286
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
287 288 289 290 291 292
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
293 294
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
295 296 297 298 299 300 301
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
302 303
        if len(op.output_arg_names
               ) == 1 and op.output_arg_names[0] == loss.name:
M
mapingshuo 已提交
304 305 306 307
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
308 309


310 311
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
312
    Traverse all ops in op_descs[begin_idx : end_idx],
313 314
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
315 316 317
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
318
        end_idx = len(op_descs)
319 320 321 322 323 324 325 326 327 328 329 330 331
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
332 333


F
fengjiayi 已提交
334
def _create_op_desc_(op_type, inputs, outputs, attrs):
335 336 337
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
338 339
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
340
    for para, args in six.iteritems(inputs):
341 342 343
        op_desc.set_input(
            para,
            list(
344 345 346
                map(
                    lambda arg: arg.decode()
                    if isinstance(arg, six.binary_type) else arg, args)))
M
minqiyang 已提交
347
    for para, args in six.iteritems(outputs):
348 349 350
        op_desc.set_output(
            para,
            list(
351 352 353
                map(
                    lambda arg: arg.decode()
                    if isinstance(arg, six.binary_type) else arg, args)))
Y
yuyang18 已提交
354 355

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
356
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
357 358 359 360

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
361 362
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
363
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
364 365 366
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
367
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
368 369 370
    return op_desc


M
mapingshuo 已提交
371 372 373 374
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
375 376 377 378 379 380
            "value":
            1.0,
            "dtype":
            loss.dtype,
            "force_cpu":
            False,
M
mapingshuo 已提交
381
            core.op_proto_and_checker_maker.kOpRoleAttrName():
382 383
            int(core.op_proto_and_checker_maker.OpRole.Backward)
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
384 385
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
386 387 388 389
        })
    return op_desc


390
def _infer_var_data_type_shape_(grad_var_name, block):
391
    """
392
    Infer the data type and shape of given grad variable
393
    """
394
    grad_var = block.desc.find_var(grad_var_name.encode())
M
minqiyang 已提交
395
    fwd_name = _strip_grad_suffix_(grad_var_name)
396 397
    if block.desc.has_var_recursive(fwd_name.encode()):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode())
F
fengjiayi 已提交
398
        grad_var.set_dtype(fwd_var.dtype())
399
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
400
    else:
401 402
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
403 404
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var"
            .format(grad_var_name))
405
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
406 407


F
fengjiayi 已提交
408
def _all_in_set_(cands, s):
409 410 411
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
412 413
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
414 415 416 417 418 419
    for c in cands:
        if not c in s:
            return False
    return True


420 421 422 423 424 425
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
426 427
    for c in cands:
        if c in s:
428 429 430 431
            return True
    return False


F
fengjiayi 已提交
432
def _strip_grad_suffix_(name):
433
    """
M
mapingshuo 已提交
434
    Strip the grad suffix from the given variable name
435 436 437
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
438
    pos = name.find(core.grad_var_suffix())
439 440 441
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
    return new_name[new_pos + 5:] if new_pos != -1 else new_name
F
fengjiayi 已提交
442 443 444


def _append_grad_suffix_(name):
445 446 447 448
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
449
    return name + core.grad_var_suffix()
F
fengjiayi 已提交
450 451


T
tangwei12 已提交
452 453 454 455 456
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
457 458 459 460 461 462
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
463 464 465 466 467
        _create_op_desc_("sum", {"X": renamed_vars[var_name]},
                         {"Out": [var_name]}, {
                             "use_mkldnn": False,
                             "op_device": op_device
                         }))
468 469 470
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
471 472 473 474 475
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
476 477 478 479 480 481 482 483 484 485 486 487 488 489
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
490 491 492 493 494 495 496
            _create_op_desc_("grad_add", {
                "X": [x_name],
                "Y": [y_name]
            }, {"Out": [out_name]}, {
                "use_mkldnn": False,
                "op_device": op_device
            }))
497 498 499
    renamed_vars[var_name] = [var_name]


500 501 502 503
def _addup_repetitive_outputs_(op_descs,
                               block_idx,
                               grad_var_to_var=None,
                               grad_op_id_to_fwd_op=None):
504 505
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
506 507
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
508
    `sum_op`s are added to implement the accumulate.
509 510 511 512

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
513
    """
514

515
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
516 517
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
518
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
519
    renamed_vars = collections.defaultdict(list)
520
    renamed_var_start_idx = collections.defaultdict(list)
521
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
522
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
523 524 525 526 527
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
528
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
529 530
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
531
            if len(renamed_vars[var_name]) > 1:
532
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
533 534 535
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
536
                else:
W
WangXi 已提交
537 538 539
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
540

F
update  
fengjiayi 已提交
541
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
542 543
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
544 545
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
546
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
547
                #    continue
F
fengjiayi 已提交
548 549 550 551 552 553 554
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
555
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
556 557
                else:
                    if len(renamed_vars[var_name]) == 1:
558
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
559 560
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
561 562 563 564 565 566 567
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
                                    var_name]
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
568 569
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
570 571 572 573 574 575
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
576 577
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

591
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
592
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
593
                    var_rename_count[var_name] += 1
594 595 596 597 598 599 600
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
                                var_name]
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
601 602 603
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
604
                    # record the latest device
605
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
606

M
minqiyang 已提交
607
    for var_name, inputs in six.iteritems(renamed_vars):
608 609
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
610 611 612
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs),
                                                 var_device[var_name])
613
            else:
614 615 616 617
                _accumulate_gradients_by_add_ops_(var_name,
                                                  renamed_vars, pending_sum_ops,
                                                  len(op_descs),
                                                  var_device[var_name])
618

619
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
620
    # sum_op descs are sorted according to their insert position
621 622 623 624 625 626 627 628 629
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
630 631 632 633 634 635
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
            if grad_op_id_to_fwd_op is not None and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None) is not None:
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
                    op_descs[target_idx].original_id()]
636
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
637 638 639 640

    return op_descs


641 642 643 644
def _remove_no_grad_branch_(op_descs,
                            no_grad_set,
                            grad_op_id_to_fwd_op=None,
                            target_vars=[]):
645 646 647 648
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
649
        2. all grad inputs of the grad op are in 'no_grad_set'
650
    NOTE: we will skip target_vars's grad name.
651
    """
F
fengjiayi 已提交
652 653

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
654 655
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
656
            return True
657 658 659 660
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
661
            no_grad_set.update(set(out_arg_names) - target_grad_var_names)
F
fengjiayi 已提交
662 663 664
            return True
        return False

F
fengjiayi 已提交
665
    # Remove ops whose outputs are all in no_grad_dict
666 667
    target_grad_var_names = set(
        [var.name + core.grad_var_suffix() for var in target_vars])
668 669 670 671
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
672
    # Insert fill_any_like_op with value 0
F
fengjiayi 已提交
673
    to_insert = []
F
fengjiayi 已提交
674
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
675
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
676
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
677
            if core.grad_var_suffix() in arg and arg in no_grad_set:
678
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
679 680
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
681 682 683 684 685
                new_op_desc = _create_op_desc_("fill_any_like", {"X": [x_in]},
                                               {"Out": [arg]}, {
                                                   'value': 0,
                                                   'dtype': -1
                                               })
686 687 688 689 690 691
                # update the mapping between fwd and bwd
                if grad_op_id_to_fwd_op is not None and grad_op_id_to_fwd_op.get(
                        op_desc.original_id(), None) is not None:
                    grad_op_id_to_fwd_op[new_op_desc.original_id(
                    )] = grad_op_id_to_fwd_op[op_desc.original_id()]
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
692

693
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
694 695 696 697

    return op_descs


C
chengduo 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
713
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
714 715 716
    """

    class Var(object):
717

C
chengduo 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
733

C
chengduo 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
815 816 817
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
818
    # not_need_op_descs will be whole graph, this IF clause avoids it.
819 820 821
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
822 823


Y
Yang Yang 已提交
824 825
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
826
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
827 828 829
    return proto.__str__()


830 831
def _append_backward_ops_with_checkpoints_(block,
                                           ops,
832
                                           target_vars,
833 834 835 836 837
                                           target_block,
                                           no_grad_dict,
                                           grad_to_var,
                                           checkpoints,
                                           grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
838 839 840 841 842 843
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
844
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
M
mapingshuo 已提交
845 846 847 848 849 850 851
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
852
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
853 854 855 856 857
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
858 859 860
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
861 862
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
863 864
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
865 866
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
867
    """
M
mapingshuo 已提交
868 869

    checkpoints_name = [x.name for x in checkpoints]
870
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
871 872
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
873
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
874
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
875
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
876
    program_stat.build_stats()
M
mapingshuo 已提交
877 878

    # 1) find ops between checkpoints, i.e. recompute_segments
879
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
880 881
    segments = []

882
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
883 884 885 886 887 888 889
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
890
            # only count the last generate op
M
mapingshuo 已提交
891 892 893 894 895 896
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
897
        pre_segment_end_idx = -1
M
mapingshuo 已提交
898 899 900
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
901 902
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
903 904 905 906
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
907 908 909
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
910
                segments.append([min_idx, max_idx + 1])
911 912 913
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
914

M
mapingshuo 已提交
915 916 917 918 919 920
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
921

J
JZ-LIANG 已提交
922
    for i, (idx1, idx2) in enumerate(recompute_segments):
923
        _logger.info("recompute segment[{}]".format(i))
924 925 926 927
        _logger.info("segment start op: [{}]: [{}]".format(
            ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()))
        _logger.info("segment end op: [{}]: [{}]".format(
            ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
928
        _logger.info("recompute segment[{}]".format(i))
929 930 931 932
        _logger.info("segment start op: [{}]: [{}]".format(
            ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()))
        _logger.info("segment end op: [{}]: [{}]".format(
            ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
J
JZ-LIANG 已提交
933

M
mapingshuo 已提交
934
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
935
    vars_should_be_hold = []
936
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
937 938 939
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
940 941

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
942
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
943 944
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
945
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
946
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
947
    # c. input variables are checkpoints
M
mapingshuo 已提交
948 949 950
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
951
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
952 953 954 955 956 957
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
958
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
959 960 961 962 963 964 965 966
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
967
                op.desc, no_grad_dict[block.idx], [])
968 969 970 971 972 973

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

974 975 976 977 978
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
979 980
            added_descs = _add_descs_to_block(grad_op_desc, local_block,
                                              grad_op_id_to_fwd_op)
M
mapingshuo 已提交
981 982 983 984 985 986 987 988 989 990 991 992
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
993
                op.desc, no_grad_dict[block.idx], [])
994 995 996 997 998 999

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1000 1001 1002 1003 1004
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1005 1006
            added_descs = _add_descs_to_block(grad_op_desc, local_block,
                                              grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1028 1029 1030

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1031 1032 1033 1034 1035 1036
                    block.create_var(name=var_name_dict[name],
                                     shape=ref_var.shape,
                                     dtype=ref_var.dtype,
                                     type=ref_var.type,
                                     persistable=ref_var.persistable,
                                     stop_gradient=ref_var.stop_gradient)
1037

M
mapingshuo 已提交
1038
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
1039
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
1040 1041 1042 1043
                                                  vars_in_memory,
                                                  grad_op_id_to_fwd_op)
        added_descs = _add_descs_to_block(ff_ops, local_block,
                                          grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1044

M
mapingshuo 已提交
1045
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1046 1047 1048 1049 1050 1051
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1052
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1053 1054
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1055
                op_desc, no_grad_dict[block.idx], [])
1056

1057 1058 1059 1060 1061 1062
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[g_op_desc.original_id(
                    )] = grad_op_id_to_fwd_op[op_desc.original_id()]

1063 1064 1065 1066 1067 1068
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1069 1070 1071 1072 1073
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1074
    # 3.d. add sum op for repetitive_outputs
1075 1076
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1077
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
1078
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
1079
                                            no_grad_dict[block.idx],
1080
                                            grad_op_id_to_fwd_op, target_vars)
1081 1082
    added_descs = _add_descs_to_block(grad_op_descs, target_block,
                                      grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1083 1084 1085
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


1086 1087 1088 1089 1090
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
1091 1092
    """
    Get output vars in subblock which will be assigned to parent block.
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1105
    """
1106

1107 1108 1109
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1122
            for op_desc in sub_block.ops:
1123
                if var in op_desc.output_arg_names:
1124
                    for name in op_desc.input_arg_names:
1125
                        sub_outputs.append(sub_block._var_recursive(name))
1126

1127 1128
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1129
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1130
                                           no_grad_set, op_path_dict, is_while)
1131 1132 1133 1134
        return sub_block_op_path
    return sub_block.ops


1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1148 1149
def _append_backward_ops_(block,
                          ops,
1150
                          target_vars,
F
fengjiayi 已提交
1151 1152 1153
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1154
                          callbacks=None,
1155
                          input_grad_names_set=None,
1156
                          op_path_dict=None,
1157
                          distop_context=None,
1158 1159
                          rename_var_map=None,
                          grad_op_id_to_fwd_op=None):
1160 1161 1162 1163 1164
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1165
        ops(Op): the forward operators whose backward ops need to be added
1166
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
1167
        target_block(Block): the block which is going to hold new generated grad ops
1168
        no_grad_dict(dict):
1169
            key(int)  block index
T
tianshuo78520a 已提交
1170
            val(set) a set of variable names. These variables have no gradient
1171 1172 1173
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1174 1175 1176 1177
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1178 1179 1180
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1181 1182
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1183
    """
1184 1185 1186 1187 1188 1189 1190

    # Build the mapping between the forward op and backward op (Only for auto parallel)
    def update_distop_context(distop_context, op_grad_to_var,
                              appending_grad_times):
        distop_context.grad_var_to_var[appending_grad_times].update(
            op_grad_to_var)
        for op_desc in grad_op_desc:
1191 1192
            assert op_desc.original_id(
            ) not in distop_context.grad_op_id_to_op_id
1193 1194
            distop_context.grad_op_id_to_op_id[
                op_desc.original_id()] = op.desc.original_id()
1195

Y
Yang Yang 已提交
1196
    if callbacks is not None:
1197
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1198 1199 1200
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1201

F
fengjiayi 已提交
1202
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1203 1204
    grad_op_descs = []
    program = block.program
1205

1206 1207 1208
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1209

1210
    # add grad_op_desc by reversed ops
1211
    for op in reversed(ops):
F
fengjiayi 已提交
1212 1213 1214
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1215
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1216
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1217
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1218 1219 1220
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1221
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1222 1223
            _append_backward_ops_(sub_block,
                                  sub_block_path,
1224
                                  target_vars,
1225 1226 1227 1228 1229 1230 1231
                                  grad_sub_block,
                                  no_grad_dict,
                                  grad_to_var,
                                  callbacks,
                                  input_grad_names_set,
                                  op_path_dict,
                                  grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
1232
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1233

W
Wu Yi 已提交
1234
            program._rollback()
F
fengjiayi 已提交
1235 1236
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1237
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1238
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1239
            op.desc, no_grad_dict[block.idx], grad_sub_block_list)
1240

1241 1242 1243 1244 1245
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1246
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1247
        if distop_context is not None:
1248 1249 1250 1251 1252 1253 1254 1255 1256
            update_distop_context(distop_context, op_grad_to_var,
                                  program._appending_grad_times)
        else:
            default_ctx = getattr(paddle.distributed.auto_parallel.dist_context,
                                  '_g_default_distributed_context', None)
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
                update_distop_context(distop_context, op_grad_to_var,
                                      program._appending_grad_times)
Y
Yang Yu 已提交
1257

1258 1259
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1260 1261 1262 1263
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1275 1276 1277 1278
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1289 1290 1291 1292 1293
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
                                    program._appending_grad_times][
                                        new_name] = op_grad_to_var[name]
1294 1295 1296
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1297 1298 1299 1300 1301
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1302 1303
            is_grad_name = lambda name: name.find(core.grad_var_suffix(
            )) != -1 or name in input_grad_names_set
1304 1305 1306 1307
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
1308
                    if is_grad_name(name)
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1326

1327 1328 1329 1330 1331
    # record mapping bewteen grad var name and var name (Only for auto parallel)
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
            program._appending_grad_times]
M
mapingshuo 已提交
1332
    # sum parameter's gradients' var given multiple var gradient
1333 1334 1335 1336 1337
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
F
fengjiayi 已提交
1338

M
mapingshuo 已提交
1339 1340
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1341
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
1342
                                            no_grad_dict[block.idx],
1343
                                            grad_op_id_to_fwd_op, target_vars)
F
fengjiayi 已提交
1344

M
mapingshuo 已提交
1345
    # remove some backward ops
C
chengduo 已提交
1346
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1347

C
chengduo 已提交
1348 1349 1350
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1351

F
fengjiayi 已提交
1352
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1353 1354
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1355
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1356 1357
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1358
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1359
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1360
        if callbacks is not None:
1361
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1362 1363
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1364

F
fengjiayi 已提交
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1386
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1387 1388 1389 1390
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1391
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1404
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1405
    """
1406 1407
    ops_to_remove = []
    '''
1408 1409 1410 1411 1412
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found
    in the parent/forward block, and they are also the outputs of while_grad
    op. These kinds of inputs are the recursive outputs inside while_grad op.
    They should be considered as "already created" when scanning the inner
    ops of while_grad ops.
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1423 1424 1425
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1426
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1427
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1445
        # If the outputs of grad op is empty, just remove it
1446 1447 1448 1449 1450
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
1451
            If the output is not empty and there is any grad input, find
1452 1453 1454 1455 1456
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
1457
                    if block.desc.has_var_recursive(var.encode())
1458
                    or var in parent_op_vars
1459 1460 1461 1462
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
1463 1464
                    in recurrent op. The input of this op does not even exist in
                    the program! Therefore, any dependency analysis would not
1465
                    work to this op! If I do not add the following code, this op
1466 1467
                    would be pruned, and the calculation result would be wrong.
                    Maybe we should re-design this op later...
1468 1469 1470
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1471
                        continue
1472

F
fengjiayi 已提交
1473 1474 1475
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
1476 1477
            if block.desc.has_var_recursive(grad_var_name.encode(
            )) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1478
                continue
1479
            block.desc.var(grad_var_name.encode())
F
fengjiayi 已提交
1480
            new_vars.add(grad_var_name)
1481
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1482 1483 1484
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1485
        op_desc.check_attrs()
F
fengjiayi 已提交
1486 1487
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1488

F
fengjiayi 已提交
1489 1490
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1491
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1492

1493 1494 1495
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1496

1497 1498 1499 1500 1501 1502
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1503
                op_desc._rename_input(name, var_map[name])
1504 1505

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1506 1507
            if "@GRAD" not in name:
                continue
1508
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1509
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1510
                op_desc._rename_output(name, new_name)
1511 1512
                var_map[name] = new_name

M
minqiyang 已提交
1513
    for g, ng in six.iteritems(var_map):
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1525
        for var in list(block.vars.values()):
1526 1527 1528 1529 1530 1531 1532
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
1559 1560
                "The type of no_grad_set should be set or list or tuple, but received {}"
                .format(type(no_grad_set)))
1561 1562 1563
    return no_grad_set_name


1564
@framework.static_only
M
mapingshuo 已提交
1565 1566 1567 1568
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
1569 1570
                    checkpoints=None,
                    distop_context=None):
1571
    """
1572 1573
    :api_attr: Static Graph

1574
    This function appends backward part to main_program.
F
fengjiayi 已提交
1575

1576 1577
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1578 1579
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1580

1581 1582
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1583

1584
    Parameters:
1585
        loss(Tensor): The loss Tensor of the network.
1586
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1587
                                           that need to be updated by optimizers.
1588
                                           If it is None, all parameters
F
fengjiayi 已提交
1589
                                           will be updated.
1590
                                           Default: None.
1591 1592
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1593
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1594
                               be automatically added into this set.
1595
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1596
                               Default: None.
1597
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1598
                                               The callbacks are used for
1599 1600 1601 1602 1603 1604
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1605
                                               object must have two input
1606 1607
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1608
                                               the new gradient operator will
1609
                                               be added to. The ``context`` is a
1610
                                               map, whose keys are gradient
1611 1612 1613
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1614
                                               has another special key-value pair:
1615
                                               the key is string ``__current_op_desc__``
1616 1617 1618
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1619
                                               Default: None.
F
fengjiayi 已提交
1620 1621

    Returns:
1622 1623
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1624 1625

    Raises:
1626
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1627 1628 1629 1630

    Examples:
        .. code-block:: python

1631 1632
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1633

1634 1635 1636 1637 1638
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1639
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1640 1641
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1642 1643

            # Get all weights in main_program, not include bias.
1644
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1645 1646 1647
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1648
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1649 1650
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1651 1652
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1653 1654 1655
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1656
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1657 1658
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1659 1660
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1661 1662
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1663 1664
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1665 1666 1667
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1668
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1669

1670
    """
1671 1672 1673
    grad_op_id_to_fwd_op = {
    }  # for cuda graph usage, recording the mapping between grad op original id to fwd op

1674
    check_type(loss, 'loss', framework.Variable,
1675
               'paddle.static.append_backward')
Y
yuyang18 已提交
1676

Y
Fix bug  
yuyang18 已提交
1677 1678
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1679
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1680

1681 1682 1683 1684
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
        | int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1685

Y
Yang Yang 已提交
1686
    if callbacks is not None:
1687
        check_type(callbacks, 'callbacks', (list, tuple),
1688
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1689

F
fengjiayi 已提交
1690
    program = loss.block.program
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1701

F
fengjiayi 已提交
1702
    if no_grad_set is None:
1703
        no_grad_set = set()
1704 1705
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1706
    no_grad_dict = _get_stop_gradients_(program)
1707 1708
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1709
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1730

F
fengjiayi 已提交
1731 1732
    grad_to_var = dict()

1733
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
1734
    op_desc = _create_loss_op_desc_(loss)
1735
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
1736 1737 1738 1739 1740 1741 1742
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1743 1744 1745 1746

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1759
        # TODO(liym27): need a better design.
1760 1761 1762 1763 1764
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1765
        # TODO: support _append_backward_ops_with_checkpoints_ in
1766
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1767
        is_recompute = False
1768 1769 1770
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1771
            is_recompute = True
1772
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1773 1774
                vars_should_be_hold, \
                recompute_segments = \
1775 1776 1777
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
1778
                    [loss],
1779 1780 1781
                    root_block,
                    no_grad_dict,
                    grad_to_var,
1782 1783
                    checkpoints,
                    grad_op_id_to_fwd_op)
1784 1785 1786 1787
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
1788
                [loss],
1789 1790 1791 1792
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1793
                input_grad_names_set=input_grad_names_set,
1794
                op_path_dict=op_path_dict,
1795
                distop_context=distop_context,
1796
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
1797 1798 1799 1800 1801 1802 1803 1804 1805

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1806 1807
    # we need rename the internal gradient variables so that they have
    # different names.
1808
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1809

1810 1811
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1812

F
fengjiayi 已提交
1813
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1814
    program._sync_with_cpp()
F
fengjiayi 已提交
1815

1816 1817 1818 1819 1820 1821
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

1822
    if parameter_list is not None:
1823 1824
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1825 1826
        parameters = []
        for i, param in enumerate(parameter_list):
1827 1828
            check_type(param, 'parameter_list[%s]' % i,
                       (framework.Variable, six.string_types),
1829
                       'fluid.backward.append_backward')
1830 1831 1832 1833
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1834
    else:
F
fengjiayi 已提交
1835
        params = program.global_block().all_parameters()
C
chengduo 已提交
1836
        parameters = [param.name for param in params if param.trainable]
1837

1838
    params_and_grads = []
1839
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1840
    for param in parameters:
1841
        if param not in grad_info_map:
F
fengjiayi 已提交
1842
            continue
F
update  
fengjiayi 已提交
1843
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1844
        grad_block = grad_info[1]
1845 1846 1847 1848
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1849
        param_var = program.global_block().var(param)
1850
        grad_var = grad_block.var(grad_info[0])
1851 1852 1853 1854 1855
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1856
        else:
1857
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1858 1859 1860 1861

    for p, g in params_and_grads:
        if g is None:
            continue
1862 1863 1864
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1865 1866 1867 1868 1869 1870 1871
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1872
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1873 1874
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1875
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1876

J
JZ-LIANG 已提交
1877 1878 1879 1880
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1881 1882 1883 1884 1885


def _as_list(x):
    if x is None:
        return []
1886
    return list(x) if isinstance(x, Sequence) else [x]
1887 1888


1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1915 1916 1917 1918 1919 1920
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1921 1922 1923 1924 1925 1926 1927 1928 1929
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
1930 1931
                    if not block.desc.find_var(name.encode()) \
                            and parent_block.desc.find_var(name.encode()):
1932 1933 1934 1935 1936 1937 1938 1939
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1940 1941 1942
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1943
    those vars belong to no_grad_var.
1944
    """
1945
    output_names = _get_output_names(block, targets)
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1960 1961 1962 1963 1964 1965
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1966
    """
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1980
    """
1981

1982
    input_names = set([inp.name for inp in inputs])
1983 1984 1985
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1986 1987 1988 1989 1990 1991

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1992 1993 1994
            if _some_in_set_(op.desc.input_arg_names(),
                             input_names) and core.has_non_empty_grad_op_maker(
                                 op.type):
1995 1996 1997 1998 1999 2000 2001
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
2002 2003 2004 2005
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
2006 2007
            sub_block_path = _get_sub_block_path(sub_block, op, set(),
                                                 op_path_dict,
2008 2009 2010
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

2011 2012 2013
        if _some_in_set_(op.desc.output_arg_names(),
                         output_names) and core.has_non_empty_grad_op_maker(
                             op.type):
2014 2015 2016 2017 2018 2019
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2020 2021 2022 2023 2024
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
2025
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
2026 2027
                relevant_op_flags[i] = True

2028 2029 2030 2031 2032 2033 2034
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2035
                if name not in input_names and block.vars[name].stop_gradient:
2036 2037 2038 2039 2040 2041 2042
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
2043
    Backpropagate the gradients of targets to inputs.
2044 2045

    Args:
2046 2047 2048
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
2049 2050
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2051 2052
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
2053 2054
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
2055
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
2056
                               Default: None.
2057 2058

    Return:
2059 2060
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2061 2062 2063 2064 2065 2066 2067 2068
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2069 2070
    # increase appending gradients times
    prog._appending_grad_times += 1
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
2082 2083
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2084
    no_grad_dict = _get_stop_gradients_(prog)
2085
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2086 2087 2088

    fwd_op_num = block.desc.op_size()

2089 2090
    input_grad_names_set = set()

2091
    target_grad_map = {}
2092
    rename_var_map = {}
2093 2094
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2095
        grad_name = _append_grad_suffix_(target.name)
2096
        if grad is None:
L
lvmengsi 已提交
2097 2098 2099 2100 2101
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
2102
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
2103
                                       {"ShapeTensor": [target_shape]},
2104
                                       {"Out": [grad_name]}, {
2105
                                           "shape": target.shape,
2106 2107 2108
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
2109

2110
            block.desc.append_op().copy_from(op_desc)
2111
            input_grad_names_set.add(grad_name)
2112 2113 2114 2115 2116
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2117 2118
                    "The shapes of target and grad are different: %s %s" %
                    (target.name, grad.name))
2119
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2120
            input_grad_names_set.add(grad.name)
2121
            rename_var_map[grad_name] = grad.name
2122 2123

    # For double backward, input_grad_names is used for filter
2124 2125
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2126 2127
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2128
        rename_var_map = {}
2129 2130 2131 2132 2133 2134

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2135 2136 2137 2138

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
2139 2140 2141 2142 2143 2144

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

2145
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2146 2147
    grad_to_var = dict()
    grad_info_map = dict()
2148 2149
    _append_backward_ops_(block,
                          op_path,
2150
                          targets,
2151 2152 2153 2154 2155 2156
                          block,
                          no_grad_dict,
                          grad_to_var,
                          input_grad_names_set=input_grad_names_set,
                          op_path_dict=op_path_dict,
                          rename_var_map=rename_var_map)
2157 2158 2159 2160 2161 2162 2163

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2164
    prog._sync_with_cpp()
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2180 2181


2182
@framework.static_only
2183 2184
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2185

2186 2187 2188
    Backpropagate the gradients of targets to inputs.

    Args:
2189 2190 2191
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2192 2193
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2194 2195 2196
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2197
            in this set will be added to the default set. Default: None.
2198 2199

    Return:
2200 2201
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2202 2203 2204
        will be None.

    Examples:
2205

2206
        .. code-block:: python
2207
          :name: code-example
2208 2209 2210 2211
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2212

2213
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2214
            x.stop_gradient=False
2215 2216 2217
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2218
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2219
    """
2220
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2221
               'paddle.static.gradients')
2222
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2223
               'paddle.static.gradients')
2224 2225 2226
    check_type(target_gradients, 'target_gradients',
               (framework.Variable, list, tuple, type(None)),
               'paddle.static.gradients')
2227 2228
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
    check_type(program, 'program', paddle.fluid.Program,
               'paddle.static.gradients_with_optimizer')
    check_type(optimizer, 'optimizer', paddle.optimizer.Optimizer,
               'paddle.static.gradients_with_optimizer')

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
        pram_grads = [(pram, grad) for pram, grad in zip(inputs, grads)
2292 2293
                      if isinstance(pram, paddle.fluid.framework.Parameter)
                      and grad is not None]
2294 2295 2296 2297

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads