learning_rate_scheduler.py 21.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25
import math
Q
qingqing01 已提交
26
import numbers
27

28 29 30 31
from . import control_flow
from . import nn
from . import ops
from . import tensor
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
Q
qingqing01 已提交
33
from ..framework import Variable
34
from ..framework import in_dygraph_mode
M
minqiyang 已提交
35
from ..dygraph import learning_rate_scheduler as imperate_lr
36
from ..data_feeder import check_variable_and_dtype, check_type
Q
Qiao Longfei 已提交
37

38 39
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
40 41
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
42
]
Q
Qiao Longfei 已提交
43 44


45
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
46
    # the first global step is zero in learning rate decay
47
    global_step = nn.autoincreased_step_counter(
48
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
49
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
50 51 52
    return global_step


53
def noam_decay(d_model, warmup_steps, learning_rate=1.0):
Y
yuyang18 已提交
54
    """
55 56 57
	:alias_main: paddle.nn.functional.noam_decay
	:alias: paddle.nn.functional.noam_decay,paddle.nn.functional.learning_rate.noam_decay
	:old_api: paddle.fluid.layers.noam_decay
S
swtkiwi 已提交
58

Y
yuyang18 已提交
59 60
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
61 62
    .. code-block:: python
      
63
      import paddle.fluid as fluid
X
xiaoting 已提交
64 65
      import numpy as np
      # set hyper parameters
66
      base_lr = 0.01
X
xiaoting 已提交
67 68 69 70
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
71
      lr_value = base_lr * np.power(d_model, -0.5) * np.min([
X
xiaoting 已提交
72 73
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
74 75 76

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
77 78 79

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
80

81 82
        warmup_steps(Variable): A super parameter.

83 84 85 86
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0

87 88
    Returns:
        The decayed learning rate.
X
xiaoting 已提交
89 90 91
    Examples:
        .. code-block:: python

92
          import paddle.fluid as fluid
X
xiaoting 已提交
93 94 95 96
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
97 98
                         warmup_steps,
                         learning_rate)
99
    """
100
    with default_main_program()._lr_schedule_guard():
101
        if in_dygraph_mode():
102 103
            decay = imperate_lr.NoamDecay(
                d_model, warmup_steps, learning_rate=learning_rate)
M
minqiyang 已提交
104 105 106
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
107

M
minqiyang 已提交
108 109
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
110 111
            lr_value = learning_rate * (d_model**-0.5) * nn.elementwise_min(a,
                                                                            b)
112

M
minqiyang 已提交
113
            return lr_value
114 115


Y
Yu Yang 已提交
116
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
117
    """
118 119 120
	:alias_main: paddle.nn.functional.exponential_decay
	:alias: paddle.nn.functional.exponential_decay,paddle.nn.functional.learning_rate.exponential_decay
	:old_api: paddle.fluid.layers.exponential_decay
S
swtkiwi 已提交
121

122
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
123

124 125
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
126 127
    'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
128
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
129

F
fengjiayi 已提交
130 131 132 133
    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
134 135

    Args:
K
Kaipeng Deng 已提交
136 137 138 139 140 141 142 143
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` every
                         `decay_steps`. If False, learning rate will be decayed continuously
                         and following the formula above. Default: False
Q
Qiao Longfei 已提交
144 145

    Returns:
K
Kaipeng Deng 已提交
146
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
147 148 149 150

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
151
          import paddle.fluid as fluid
F
fengjiayi 已提交
152 153
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
154 155 156 157 158
	      learning_rate=fluid.layers.exponential_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
F
fengjiayi 已提交
159

Q
Qiao Longfei 已提交
160
    """
161
    with default_main_program()._lr_schedule_guard():
162
        if in_dygraph_mode():
163 164 165 166 167
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
168

169 170 171 172
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
173

174
            return decayed_lr
Q
Qiao Longfei 已提交
175 176


Y
Yu Yang 已提交
177
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
S
swtkiwi 已提交
178
    """
179 180 181
	:alias_main: paddle.nn.functional.natural_exp_decay
	:alias: paddle.nn.functional.natural_exp_decay,paddle.nn.functional.learning_rate.natural_exp_decay
	:old_api: paddle.fluid.layers.natural_exp_decay
S
swtkiwi 已提交
182 183

Applies natural exponential decay to the initial learning rate.
Q
Qiao Longfei 已提交
184

K
Kaipeng Deng 已提交
185 186 187 188
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
    natural exponential power 'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
189
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
190

Y
Yu Yang 已提交
191 192 193
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
194
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Y
Yu Yang 已提交
195

Q
Qiao Longfei 已提交
196
    Args:
K
Kaipeng Deng 已提交
197 198 199 200 201
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
T
tianshuo78520a 已提交
202
                         means the learning rate will be decayed by natural exponential power
K
Kaipeng Deng 已提交
203 204
                         `decay_rate` every `decay_steps`. If False, learning rate will be
                         decayed continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
205 206

    Returns:
K
Kaipeng Deng 已提交
207
        The decayed learning rate. The data type is float32.
K
Kaipeng Deng 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))

Q
Qiao Longfei 已提交
221
    """
222
    with default_main_program()._lr_schedule_guard():
223
        if in_dygraph_mode():
224 225 226 227 228
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
229

230 231 232 233
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
234

235
            return decayed_lr
Q
Qiao Longfei 已提交
236 237


Y
Yu Yang 已提交
238
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
239
    """
240 241 242
	:alias_main: paddle.nn.functional.inverse_time_decay
	:alias: paddle.nn.functional.inverse_time_decay,paddle.nn.functional.learning_rate.inverse_time_decay
	:old_api: paddle.fluid.layers.inverse_time_decay
S
swtkiwi 已提交
243

F
fengjiayi 已提交
244
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
245

246 247
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
248
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
249

T
tianshuo78520a 已提交
250
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
251

F
fengjiayi 已提交
252
    >>> if staircase == True:
Y
Yu Yang 已提交
253 254 255 256
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
257
    Args:
K
Kaipeng Deng 已提交
258 259 260 261 262 263 264 265
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` times 
                         every `decay_steps`. If False, learning rate will be decayed 
                         continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
266 267

    Returns:
K
Kaipeng Deng 已提交
268
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
269 270 271 272

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
273
          import paddle.fluid as fluid
F
fengjiayi 已提交
274 275
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
276
	      learning_rate=fluid.layers.inverse_time_decay(
K
Kaipeng Deng 已提交
277 278 279 280
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
Q
Qiao Longfei 已提交
281
    """
282
    with default_main_program()._lr_schedule_guard():
283
        if in_dygraph_mode():
284 285 286 287 288
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
289

290 291 292
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
293

294
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
295

296
            return decayed_lr
297 298 299 300 301 302 303


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
304
    """
305 306 307
	:alias_main: paddle.nn.functional.polynomial_decay
	:alias: paddle.nn.functional.polynomial_decay,paddle.nn.functional.learning_rate.polynomial_decay
	:old_api: paddle.fluid.layers.polynomial_decay
S
swtkiwi 已提交
308
2
Q
qiaolongfei 已提交
309 310
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
311
    .. code-block:: text
Q
qiaolongfei 已提交
312 313 314 315 316 317 318

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
319 320

    Args:
Q
qiaolongfei 已提交
321
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
322
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
323
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
324 325 326
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
327 328

    Returns:
Q
update  
qiaolongfei 已提交
329
        Variable: The decayed learning rate
X
xiaoting 已提交
330 331 332 333 334 335 336 337 338 339 340

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

341
    """
342
    with default_main_program()._lr_schedule_guard():
343
        if in_dygraph_mode():
344 345 346
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
347
        else:
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
366

367 368 369
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
370 371


Y
Yu Yang 已提交
372
def piecewise_decay(boundaries, values):
S
swtkiwi 已提交
373
    """
374 375 376
	:alias_main: paddle.nn.functional.piecewise_decay
	:alias: paddle.nn.functional.piecewise_decay,paddle.nn.functional.learning_rate.piecewise_decay
	:old_api: paddle.fluid.layers.piecewise_decay
S
swtkiwi 已提交
377 378

Applies piecewise decay to the initial learning rate.
379

X
xiaoting 已提交
380
    The algorithm can be described as the code below.
X
Xin Pan 已提交
381

X
xiaoting 已提交
382
    .. code-block:: text
X
Xin Pan 已提交
383

X
xiaoting 已提交
384 385 386 387 388 389 390 391
      boundaries = [10000, 20000]
      values = [1.0, 0.5, 0.1]
      if step < 10000:
          learning_rate = 1.0
      elif 10000 <= step < 20000:
          learning_rate = 0.5
      else:
          learning_rate = 0.1
X
Xin Pan 已提交
392 393 394 395 396 397 398 399
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
xiaoting 已提交
400 401 402 403 404 405 406 407 408 409 410
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          optimizer = fluid.optimizer.Momentum(
              momentum=0.9,
              learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
              regularization=fluid.regularizer.L2Decay(1e-4))

X
Xin Pan 已提交
411

412
    """
413 414 415 416
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

417
        if in_dygraph_mode():
M
minqiyang 已提交
418
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
419 420 421
            return decay
        else:
            global_step = _decay_step_counter()
422

423 424 425 426 427 428
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
429

430 431 432 433 434 435 436 437 438 439 440 441
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
442 443
                    shape=[1],
                    dtype='float32',
444 445 446
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
447

448
            return lr
W
Wu Yi 已提交
449 450


S
shippingwang 已提交
451 452
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
453 454 455
	:alias_main: paddle.nn.functional.cosine_decay
	:alias: paddle.nn.functional.cosine_decay,paddle.nn.functional.learning_rate.cosine_decay
	:old_api: paddle.fluid.layers.cosine_decay
S
swtkiwi 已提交
456

S
shippingwang 已提交
457 458
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
459
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
460 461
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
462

463 464
    .. math::

X
xsrobin 已提交
465 466
        decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)

S
shippingwang 已提交
467 468 469 470 471
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

472
    Returns:
X
xsrobin 已提交
473
        Variable: The decayed learning rate.
S
shippingwang 已提交
474

475
    Examples:
X
xsrobin 已提交
476
        .. code-block:: python
S
shippingwang 已提交
477

X
xsrobin 已提交
478 479 480 481
            import paddle.fluid as fluid
            base_lr = 0.1
            lr = fluid.layers.cosine_decay(
            learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
482
    """
483 484
    check_type(learning_rate, 'learning_rate', (float, tensor.Variable),
               'cosine_decay')
485

S
shippingwang 已提交
486
    with default_main_program()._lr_schedule_guard():
487
        if in_dygraph_mode():
M
minqiyang 已提交
488 489 490 491 492
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
493

M
minqiyang 已提交
494 495 496 497
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
498 499


500 501
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
502 503 504
	:alias_main: paddle.nn.functional.linear_lr_warmup
	:alias: paddle.nn.functional.linear_lr_warmup,paddle.nn.functional.learning_rate.linear_lr_warmup
	:old_api: paddle.fluid.layers.linear_lr_warmup
S
swtkiwi 已提交
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When global_step < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When global_step >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is the learning_rate after warm-up.
    
526
    Args:
527 528 529 530 531
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
    
532
    Returns:
533 534 535
        Variable: Warm-up learning rate with the same data type as learning_rate.
    
    
536
    Examples:
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    
    .. code-block:: python
    
        import paddle.fluid as fluid
    
        boundaries = [100, 200]
        lr_steps = [0.1, 0.01, 0.001]
        learning_rate = fluid.layers.piecewise_decay(boundaries, lr_steps) #case1, 1D-Tensor
        #learning_rate = 0.1  #case2, single-value
        warmup_steps = 50
        start_lr = 1. / 3.
        end_lr = 0.1
        decayed_lr = fluid.layers.linear_lr_warmup(learning_rate,
            warmup_steps, start_lr, end_lr)
    
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        out, = exe.run(fetch_list=[decayed_lr.name])
        print(out)
        # case1: [0.33333334]
        # case2: [0.33333334]
559
    """
Q
qingqing01 已提交
560 561 562 563 564
    dtype = 'float32'
    if isinstance(learning_rate, Variable):
        dtype = learning_rate.dtype

    linear_step = float(end_lr) - float(start_lr)
565
    with default_main_program()._lr_schedule_guard():
H
hong 已提交
566

567
        if in_dygraph_mode():
H
hong 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
            lr = imperate_lr.LinearLrWarmup(learning_rate, warmup_steps,
                                            start_lr, end_lr)
            return lr
        else:
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype=dtype,
                persistable=True,
                name="learning_rate_warmup")

            global_step = _decay_step_counter()

            with control_flow.Switch() as switch:
                with switch.case(global_step < warmup_steps):
                    decayed_lr = start_lr + linear_step * (global_step /
                                                           float(warmup_steps))
                    tensor.assign(decayed_lr, lr)
                with switch.default():
                    if not isinstance(learning_rate, Variable):
                        learning_rate = tensor.fill_constant(
                            shape=[1], dtype=dtype, value=float(learning_rate))
                    tensor.assign(learning_rate, lr)
            return lr