learning_rate_scheduler.py 20.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25
import math
Q
qingqing01 已提交
26
import numbers
27

28 29 30 31
from . import control_flow
from . import nn
from . import ops
from . import tensor
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
Q
qingqing01 已提交
33
from ..framework import Variable
34
from ..framework import in_dygraph_mode
M
minqiyang 已提交
35
from ..dygraph import learning_rate_scheduler as imperate_lr
Q
Qiao Longfei 已提交
36

37 38
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
39 40
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
41
]
Q
Qiao Longfei 已提交
42 43


44
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
45
    # the first global step is zero in learning rate decay
46
    global_step = nn.autoincreased_step_counter(
47
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
48
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
49 50 51
    return global_step


52
def noam_decay(d_model, warmup_steps, learning_rate=1.0):
Y
yuyang18 已提交
53 54 55
    """
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
56 57
    .. code-block:: python
      
58
      import paddle.fluid as fluid
X
xiaoting 已提交
59 60
      import numpy as np
      # set hyper parameters
61
      base_lr = 0.01
X
xiaoting 已提交
62 63 64 65
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
66
      lr_value = base_lr * np.power(d_model, -0.5) * np.min([
X
xiaoting 已提交
67 68
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
69 70 71

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
72 73 74

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
75

76 77
        warmup_steps(Variable): A super parameter.

78 79 80 81
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0

82 83
    Returns:
        The decayed learning rate.
X
xiaoting 已提交
84 85 86
    Examples:
        .. code-block:: python

87
          import paddle.fluid as fluid
X
xiaoting 已提交
88 89 90 91
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
92 93
                         warmup_steps,
                         learning_rate)
94
    """
95
    with default_main_program()._lr_schedule_guard():
96
        if in_dygraph_mode():
97 98
            decay = imperate_lr.NoamDecay(
                d_model, warmup_steps, learning_rate=learning_rate)
M
minqiyang 已提交
99 100 101
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
102

M
minqiyang 已提交
103 104
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
105 106
            lr_value = learning_rate * (d_model**-0.5) * nn.elementwise_min(a,
                                                                            b)
107

M
minqiyang 已提交
108
            return lr_value
109 110


Y
Yu Yang 已提交
111
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
112
    """
113
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
114

115 116
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
117 118
    'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
119
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
120

F
fengjiayi 已提交
121 122 123 124
    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
125 126

    Args:
K
Kaipeng Deng 已提交
127 128 129 130 131 132 133 134
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` every
                         `decay_steps`. If False, learning rate will be decayed continuously
                         and following the formula above. Default: False
Q
Qiao Longfei 已提交
135 136

    Returns:
K
Kaipeng Deng 已提交
137
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
138 139 140 141

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
142
          import paddle.fluid as fluid
F
fengjiayi 已提交
143 144
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
145 146 147 148 149
	      learning_rate=fluid.layers.exponential_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
F
fengjiayi 已提交
150

Q
Qiao Longfei 已提交
151
    """
152
    with default_main_program()._lr_schedule_guard():
153
        if in_dygraph_mode():
154 155 156 157 158
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
159

160 161 162 163
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
164

165
            return decayed_lr
Q
Qiao Longfei 已提交
166 167


Y
Yu Yang 已提交
168
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
169 170
    """Applies natural exponential decay to the initial learning rate.

K
Kaipeng Deng 已提交
171 172 173 174
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
    natural exponential power 'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
175
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
176

Y
Yu Yang 已提交
177 178 179
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
180
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Y
Yu Yang 已提交
181

Q
Qiao Longfei 已提交
182
    Args:
K
Kaipeng Deng 已提交
183 184 185 186 187
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
T
tianshuo78520a 已提交
188
                         means the learning rate will be decayed by natural exponential power
K
Kaipeng Deng 已提交
189 190
                         `decay_rate` every `decay_steps`. If False, learning rate will be
                         decayed continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
191 192

    Returns:
K
Kaipeng Deng 已提交
193
        The decayed learning rate. The data type is float32.
K
Kaipeng Deng 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))

Q
Qiao Longfei 已提交
207
    """
208
    with default_main_program()._lr_schedule_guard():
209
        if in_dygraph_mode():
210 211 212 213 214
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
215

216 217 218 219
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
220

221
            return decayed_lr
Q
Qiao Longfei 已提交
222 223


Y
Yu Yang 已提交
224
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
225 226
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
227

228 229
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
230
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
231

T
tianshuo78520a 已提交
232
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
233

F
fengjiayi 已提交
234
    >>> if staircase == True:
Y
Yu Yang 已提交
235 236 237 238
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
239
    Args:
K
Kaipeng Deng 已提交
240 241 242 243 244 245 246 247
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` times 
                         every `decay_steps`. If False, learning rate will be decayed 
                         continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
248 249

    Returns:
K
Kaipeng Deng 已提交
250
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
251 252 253 254

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
255
          import paddle.fluid as fluid
F
fengjiayi 已提交
256 257
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
258
	      learning_rate=fluid.layers.inverse_time_decay(
K
Kaipeng Deng 已提交
259 260 261 262
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
Q
Qiao Longfei 已提交
263
    """
264
    with default_main_program()._lr_schedule_guard():
265
        if in_dygraph_mode():
266 267 268 269 270
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
271

272 273 274
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
275

276
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
277

278
            return decayed_lr
279 280 281 282 283 284 285


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
286 287 288
    """
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
289
    .. code-block:: text
Q
qiaolongfei 已提交
290 291 292 293 294 295 296

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
297 298

    Args:
Q
qiaolongfei 已提交
299
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
300
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
301
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
302 303 304
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
305 306

    Returns:
Q
update  
qiaolongfei 已提交
307
        Variable: The decayed learning rate
X
xiaoting 已提交
308 309 310 311 312 313 314 315 316 317 318

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

319
    """
320
    with default_main_program()._lr_schedule_guard():
321
        if in_dygraph_mode():
322 323 324
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
325
        else:
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
344

345 346 347
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
348 349


Y
Yu Yang 已提交
350
def piecewise_decay(boundaries, values):
351 352
    """Applies piecewise decay to the initial learning rate.

X
xiaoting 已提交
353
    The algorithm can be described as the code below.
X
Xin Pan 已提交
354

X
xiaoting 已提交
355
    .. code-block:: text
X
Xin Pan 已提交
356

X
xiaoting 已提交
357 358 359 360 361 362 363 364
      boundaries = [10000, 20000]
      values = [1.0, 0.5, 0.1]
      if step < 10000:
          learning_rate = 1.0
      elif 10000 <= step < 20000:
          learning_rate = 0.5
      else:
          learning_rate = 0.1
X
Xin Pan 已提交
365 366 367 368 369 370 371 372
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
xiaoting 已提交
373 374 375 376 377 378 379 380 381 382 383
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          optimizer = fluid.optimizer.Momentum(
              momentum=0.9,
              learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
              regularization=fluid.regularizer.L2Decay(1e-4))

X
Xin Pan 已提交
384

385
    """
386 387 388 389
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

390
        if in_dygraph_mode():
M
minqiyang 已提交
391
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
392 393 394
            return decay
        else:
            global_step = _decay_step_counter()
395

396 397 398 399 400 401
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
402

403 404 405 406 407 408 409 410 411 412 413 414
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
415 416
                    shape=[1],
                    dtype='float32',
417 418 419
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
420

421
            return lr
W
Wu Yi 已提交
422 423


S
shippingwang 已提交
424 425 426 427
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
428
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
429 430
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
431

432 433
    .. math::

X
xsrobin 已提交
434 435
        decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)

S
shippingwang 已提交
436 437 438 439 440
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

441
    Returns:
X
xsrobin 已提交
442
        Variable: The decayed learning rate.
S
shippingwang 已提交
443

444
    Examples:
X
xsrobin 已提交
445
        .. code-block:: python
S
shippingwang 已提交
446

X
xsrobin 已提交
447 448 449 450
            import paddle.fluid as fluid
            base_lr = 0.1
            lr = fluid.layers.cosine_decay(
            learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
451
    """
452

S
shippingwang 已提交
453
    with default_main_program()._lr_schedule_guard():
454
        if in_dygraph_mode():
M
minqiyang 已提交
455 456 457 458 459
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
460

M
minqiyang 已提交
461 462 463 464
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
465 466


467 468
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When global_step < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When global_step >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is the learning_rate after warm-up.
    
489
    Args:
490 491 492 493 494
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
    
495
    Returns:
496 497 498
        Variable: Warm-up learning rate with the same data type as learning_rate.
    
    
499
    Examples:
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    
    .. code-block:: python
    
        import paddle.fluid as fluid
    
        boundaries = [100, 200]
        lr_steps = [0.1, 0.01, 0.001]
        learning_rate = fluid.layers.piecewise_decay(boundaries, lr_steps) #case1, 1D-Tensor
        #learning_rate = 0.1  #case2, single-value
        warmup_steps = 50
        start_lr = 1. / 3.
        end_lr = 0.1
        decayed_lr = fluid.layers.linear_lr_warmup(learning_rate,
            warmup_steps, start_lr, end_lr)
    
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        out, = exe.run(fetch_list=[decayed_lr.name])
        print(out)
        # case1: [0.33333334]
        # case2: [0.33333334]
522
    """
Q
qingqing01 已提交
523 524 525 526 527
    dtype = 'float32'
    if isinstance(learning_rate, Variable):
        dtype = learning_rate.dtype

    linear_step = float(end_lr) - float(start_lr)
528
    with default_main_program()._lr_schedule_guard():
H
hong 已提交
529

530
        if in_dygraph_mode():
H
hong 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
            lr = imperate_lr.LinearLrWarmup(learning_rate, warmup_steps,
                                            start_lr, end_lr)
            return lr
        else:
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype=dtype,
                persistable=True,
                name="learning_rate_warmup")

            global_step = _decay_step_counter()

            with control_flow.Switch() as switch:
                with switch.case(global_step < warmup_steps):
                    decayed_lr = start_lr + linear_step * (global_step /
                                                           float(warmup_steps))
                    tensor.assign(decayed_lr, lr)
                with switch.default():
                    if not isinstance(learning_rate, Variable):
                        learning_rate = tensor.fill_constant(
                            shape=[1], dtype=dtype, value=float(learning_rate))
                    tensor.assign(learning_rate, lr)
            return lr