learning_rate_scheduler.py 13.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26
import math

27 28 29 30
from . import control_flow
from . import nn
from . import ops
from . import tensor
31
from ..initializer import init_on_cpu
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
33
from ..imperative import base as imperative_base
M
minqiyang 已提交
34
from ..imperative import learning_rate_scheduler as imperate_lr
Q
Qiao Longfei 已提交
35

36 37
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
S
shippingwang 已提交
38 39
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS',
    'cosine_decay'
40
]
Q
Qiao Longfei 已提交
41 42


43
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
44
    # the first global step is zero in learning rate decay
45
    global_step = nn.autoincreased_step_counter(
46
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
47
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
48 49 50
    return global_step


51
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
52 53 54 55 56 57 58 59 60 61
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
62 63 64

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
65

66 67 68 69 70
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
71 72
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter(1)
F
fengjiayi 已提交
73

74 75 76
        a = global_step**-0.5
        b = (warmup_steps**-1.5) * global_step
        lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
77

78
    return lr_value
79 80


Y
Yu Yang 已提交
81
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
82
    """
83
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
84

85 86
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
87 88 89 90 91 92
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
93 94

    Args:
F
fengjiayi 已提交
95 96 97 98 99
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
100 101

    Returns:
F
fengjiayi 已提交
102
        Variable: The decayed learning rate
F
fengjiayi 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
116
    """
117 118
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
119

120 121 122 123
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * (decay_rate**div_res)
124

125
        return decayed_lr
Q
Qiao Longfei 已提交
126 127


Y
Yu Yang 已提交
128
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
129 130
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
131 132 133 134 135
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
136 137 138 139 140 141 142 143 144 145
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
146 147
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
148

149 150 151 152
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
153

154
        return decayed_lr
Q
Qiao Longfei 已提交
155 156


Y
Yu Yang 已提交
157
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
158 159
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
160

161 162
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
163
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
164

F
fengjiayi 已提交
165
    >>> if staircase == True:
Y
Yu Yang 已提交
166 167 168 169
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
170
    Args:
F
fengjiayi 已提交
171 172 173 174 175
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
176 177

    Returns:
F
fengjiayi 已提交
178
        Variable: The decayed learning rate
F
fengjiayi 已提交
179 180 181 182 183 184 185 186 187 188 189 190

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
191
    """
192 193
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
194

195 196 197
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
198

199
        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
200

201
        return decayed_lr
202 203 204 205 206 207 208


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
209 210 211
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
212
    .. code-block:: python
Q
qiaolongfei 已提交
213 214 215 216 217 218 219

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
220 221

    Args:
Q
qiaolongfei 已提交
222
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
223
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
224
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
225 226 227
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
228 229

    Returns:
Q
update  
qiaolongfei 已提交
230
        Variable: The decayed learning rate
231
    """
232 233
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
234

235 236 237 238 239 240
        if cycle:
            div_res = ops.ceil(global_step / decay_steps)
            zero_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
241

242 243 244 245 246 247 248 249
            with control_flow.Switch() as switch:
                with switch.case(global_step == zero_var):
                    tensor.assign(input=one_var, output=div_res)
            decay_steps = decay_steps * div_res
        else:
            decay_steps_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=float(decay_steps))
            global_step = nn.elementwise_min(x=global_step, y=decay_steps_var)
250

251 252 253
        decayed_lr = (learning_rate - end_learning_rate) * \
            ((1 - global_step / decay_steps) ** power) + end_learning_rate
        return decayed_lr
254 255


Y
Yu Yang 已提交
256
def piecewise_decay(boundaries, values):
257 258
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
259 260 261 262 263 264 265 266 267 268 269 270
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
271 272 273 274 275 276 277 278
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
279

280
    """
281 282 283 284
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

285
        if imperative_base.enabled():
M
minqiyang 已提交
286
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
287 288 289
            return decay
        else:
            global_step = _decay_step_counter()
290

291 292 293 294 295 296
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
297

298 299 300 301 302 303 304 305 306 307 308 309
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
310 311
                    shape=[1],
                    dtype='float32',
312 313 314
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
315

316
            return lr
W
Wu Yi 已提交
317 318


S
shippingwang 已提交
319 320 321 322
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
323
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
324 325
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
326 327

    decayed_lr = learning_rate * 0.5 * (math.cos(epoch * math.pi / epochs) + 1)
328

S
shippingwang 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

     Returns:
        Variable: The decayed learning rate.

     Examples:

    ..code-block:: python

  	base_lr = 0.1
	lr = fluid.layers.cosine_decay(
	learning_rate = base_lr, step_each_epoch=10000, epochs=120)
    """
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()

        cur_epoch = ops.floor(global_step / step_each_epoch)
        decayed_lr = learning_rate * 0.5 * (
            ops.cos(cur_epoch * math.pi / epochs) + 1)
        return decayed_lr


W
Wu Yi 已提交
354
def append_LARS(params_grads, learning_rate, weight_decay):
T
Tink_Y 已提交
355 356 357
    """
    Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
    each layer.
W
Wu Yi 已提交
358 359 360 361 362 363 364 365

    Args:
        learning_rate: A learning rate Variable. This
          is the global learning rate for LARS.
        weight_decay: A Python `float` number.

    Returns:
        The decayed learning rate
T
Tink_Y 已提交
366 367
    Examples:
        .. code-block:: python
M
minqiyang 已提交
368

T
Tink_Y 已提交
369 370
            learning_rate *= local_gw_ratio * sqrt(sumsq(param))
                        / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
W
Wu Yi 已提交
371 372 373 374 375 376 377 378 379
    """

    def _balanced_weight(param_norm, grad_norm):
        if weight_decay == 1.0:
            return grad_norm + param_norm
        else:
            return grad_norm + weight_decay * param_norm

    for param, grad in params_grads:
380 381 382 383 384 385 386 387 388 389 390 391 392
        with param.block.program.optimized_guard(
            [param, grad]), name_scope("optimizer"):
            param_lr = param.optimize_attr['learning_rate']
            param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param)))
            grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
            if type(param_lr) == float and param_lr == 1.0:
                decayed_lr = learning_rate * param_norm \
                    / _balanced_weight(param_norm, grad_norm)
            else:
                decayed_lr = learning_rate * param_lr * param_norm \
                    / _balanced_weight(param_norm, grad_norm)
            # set back param local learning rate
            param.optimize_attr['learning_rate'] = decayed_lr