learning_rate_scheduler.py 17.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25
import math
Q
qingqing01 已提交
26
import numbers
27

28 29 30 31
from . import control_flow
from . import nn
from . import ops
from . import tensor
32
from ..initializer import init_on_cpu
33
from ..framework import default_main_program, Parameter, unique_name, name_scope
Q
qingqing01 已提交
34
from ..framework import Variable
M
minqiyang 已提交
35 36
from ..dygraph import base as imperative_base
from ..dygraph import learning_rate_scheduler as imperate_lr
Q
Qiao Longfei 已提交
37

38 39
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
40 41
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
42
]
Q
Qiao Longfei 已提交
43 44


45
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
46
    # the first global step is zero in learning rate decay
47
    global_step = nn.autoincreased_step_counter(
48
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
49
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
50 51 52
    return global_step


53
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
54 55 56
    """
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
57 58
    .. code-block:: python
      
59
      import padde.fluid as fluid
X
xiaoting 已提交
60 61 62 63 64 65 66 67 68
      import numpy as np
      # set hyper parameters
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
      lr_value = np.power(d_model, -0.5) * np.min([
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
69 70 71

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
72 73 74

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
75

76 77 78 79
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
X
xiaoting 已提交
80 81 82 83 84 85 86 87 88
    Examples:
        .. code-block:: python

          import padde.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
                         warmup_steps)
89
    """
90
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
91 92 93 94 95
        if imperative_base.enabled():
            decay = imperate_lr.NoamDecay(d_model, warmup_steps)
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
96

M
minqiyang 已提交
97 98 99
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
            lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
100

M
minqiyang 已提交
101
            return lr_value
102 103


Y
Yu Yang 已提交
104
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
105
    """
106
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
107

108 109
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
110 111 112 113 114 115
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
116 117

    Args:
F
fengjiayi 已提交
118 119 120 121 122
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
123 124

    Returns:
F
fengjiayi 已提交
125
        Variable: The decayed learning rate
F
fengjiayi 已提交
126 127 128 129

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
130
          import paddle.fluid as fluid
F
fengjiayi 已提交
131 132
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
133 134 135 136 137
	      learning_rate=fluid.layers.exponential_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
F
fengjiayi 已提交
138

Q
Qiao Longfei 已提交
139
    """
140
    with default_main_program()._lr_schedule_guard():
141 142 143 144 145 146
        if imperative_base.enabled():
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
147

148 149 150 151
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
152

153
            return decayed_lr
Q
Qiao Longfei 已提交
154 155


Y
Yu Yang 已提交
156
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
157 158
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
159 160 161
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
162
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Y
Yu Yang 已提交
163

Q
Qiao Longfei 已提交
164 165 166 167 168 169 170 171 172
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
K
Kaipeng Deng 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))

Q
Qiao Longfei 已提交
186
    """
187
    with default_main_program()._lr_schedule_guard():
188 189 190 191 192 193
        if imperative_base.enabled():
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
194

195 196 197 198
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
199

200
            return decayed_lr
Q
Qiao Longfei 已提交
201 202


Y
Yu Yang 已提交
203
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
204 205
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
206

207 208
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
209
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
210

F
fengjiayi 已提交
211
    >>> if staircase == True:
Y
Yu Yang 已提交
212 213 214 215
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
216
    Args:
F
fengjiayi 已提交
217 218 219 220 221
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
222 223

    Returns:
F
fengjiayi 已提交
224
        Variable: The decayed learning rate
F
fengjiayi 已提交
225 226 227 228

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
229
          import paddle.fluid as fluid
F
fengjiayi 已提交
230 231
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
232 233 234 235 236
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
Q
Qiao Longfei 已提交
237
    """
238
    with default_main_program()._lr_schedule_guard():
239 240 241 242 243 244
        if imperative_base.enabled():
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
245

246 247 248
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
249

250
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
251

252
            return decayed_lr
253 254 255 256 257 258 259


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
260 261 262
    """
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
263
    .. code-block:: text
Q
qiaolongfei 已提交
264 265 266 267 268 269 270

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
271 272

    Args:
Q
qiaolongfei 已提交
273
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
274
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
275
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
276 277 278
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
279 280

    Returns:
Q
update  
qiaolongfei 已提交
281
        Variable: The decayed learning rate
X
xiaoting 已提交
282 283 284 285 286 287 288 289 290 291 292

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

293
    """
294
    with default_main_program()._lr_schedule_guard():
295 296 297 298
        if imperative_base.enabled():
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
299
        else:
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
318

319 320 321
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
322 323


Y
Yu Yang 已提交
324
def piecewise_decay(boundaries, values):
325 326
    """Applies piecewise decay to the initial learning rate.

X
xiaoting 已提交
327
    The algorithm can be described as the code below.
X
Xin Pan 已提交
328

X
xiaoting 已提交
329
    .. code-block:: text
X
Xin Pan 已提交
330

X
xiaoting 已提交
331 332 333 334 335 336 337 338
      boundaries = [10000, 20000]
      values = [1.0, 0.5, 0.1]
      if step < 10000:
          learning_rate = 1.0
      elif 10000 <= step < 20000:
          learning_rate = 0.5
      else:
          learning_rate = 0.1
X
Xin Pan 已提交
339 340 341 342 343 344 345 346
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
xiaoting 已提交
347 348 349 350 351 352 353 354 355 356 357
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          optimizer = fluid.optimizer.Momentum(
              momentum=0.9,
              learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
              regularization=fluid.regularizer.L2Decay(1e-4))

X
Xin Pan 已提交
358

359
    """
360 361 362 363
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

364
        if imperative_base.enabled():
M
minqiyang 已提交
365
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
366 367 368
            return decay
        else:
            global_step = _decay_step_counter()
369

370 371 372 373 374 375
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
376

377 378 379 380 381 382 383 384 385 386 387 388
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
389 390
                    shape=[1],
                    dtype='float32',
391 392 393
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
394

395
            return lr
W
Wu Yi 已提交
396 397


S
shippingwang 已提交
398 399 400 401
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
402
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
403 404
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
405

406 407
    .. math::

X
xsrobin 已提交
408 409
        decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)

S
shippingwang 已提交
410 411 412 413 414
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

415
    Returns:
X
xsrobin 已提交
416
        Variable: The decayed learning rate.
S
shippingwang 已提交
417

418
    Examples:
X
xsrobin 已提交
419
        .. code-block:: python
S
shippingwang 已提交
420

X
xsrobin 已提交
421 422 423 424
            import paddle.fluid as fluid
            base_lr = 0.1
            lr = fluid.layers.cosine_decay(
            learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
425
    """
426

S
shippingwang 已提交
427
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
428 429 430 431 432 433
        if imperative_base.enabled():
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
434

M
minqiyang 已提交
435 436 437 438
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
439 440


441 442
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When global_step < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When global_step >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is the learning_rate after warm-up.
    
463
    Args:
464 465 466 467 468
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
    
469
    Returns:
470 471 472
        Variable: Warm-up learning rate with the same data type as learning_rate.
    
    
473
    Examples:
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    
    .. code-block:: python
    
        import paddle.fluid as fluid
    
        boundaries = [100, 200]
        lr_steps = [0.1, 0.01, 0.001]
        learning_rate = fluid.layers.piecewise_decay(boundaries, lr_steps) #case1, 1D-Tensor
        #learning_rate = 0.1  #case2, single-value
        warmup_steps = 50
        start_lr = 1. / 3.
        end_lr = 0.1
        decayed_lr = fluid.layers.linear_lr_warmup(learning_rate,
            warmup_steps, start_lr, end_lr)
    
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        out, = exe.run(fetch_list=[decayed_lr.name])
        print(out)
        # case1: [0.33333334]
        # case2: [0.33333334]
496
    """
Q
qingqing01 已提交
497 498 499 500 501
    dtype = 'float32'
    if isinstance(learning_rate, Variable):
        dtype = learning_rate.dtype

    linear_step = float(end_lr) - float(start_lr)
502 503 504 505
    with default_main_program()._lr_schedule_guard():
        lr = tensor.create_global_var(
            shape=[1],
            value=0.0,
Q
qingqing01 已提交
506
            dtype=dtype,
507 508 509 510 511 512 513 514 515 516 517
            persistable=True,
            name="learning_rate_warmup")

        global_step = _decay_step_counter()

        with control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                decayed_lr = start_lr + linear_step * (global_step /
                                                       float(warmup_steps))
                tensor.assign(decayed_lr, lr)
            with switch.default():
Q
qingqing01 已提交
518 519 520
                if not isinstance(learning_rate, Variable):
                    learning_rate = tensor.fill_constant(
                        shape=[1], dtype=dtype, value=float(learning_rate))
521 522
                tensor.assign(learning_rate, lr)
    return lr