learning_rate_scheduler.py 20.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25
import math
Q
qingqing01 已提交
26
import numbers
27

28 29 30 31
from . import control_flow
from . import nn
from . import ops
from . import tensor
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
Q
qingqing01 已提交
33
from ..framework import Variable
34
from ..framework import in_dygraph_mode
M
minqiyang 已提交
35
from ..dygraph import learning_rate_scheduler as imperate_lr
36
from ..data_feeder import check_variable_and_dtype, check_type
Q
Qiao Longfei 已提交
37

38 39
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
40 41
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
42
]
Q
Qiao Longfei 已提交
43 44


45
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
46
    # the first global step is zero in learning rate decay
47
    global_step = nn.autoincreased_step_counter(
48
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
49
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
50 51 52
    return global_step


53
def noam_decay(d_model, warmup_steps, learning_rate=1.0):
Y
yuyang18 已提交
54 55 56
    """
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
57 58
    .. code-block:: python
      
59
      import paddle.fluid as fluid
X
xiaoting 已提交
60 61
      import numpy as np
      # set hyper parameters
62
      base_lr = 0.01
X
xiaoting 已提交
63 64 65 66
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
67
      lr_value = base_lr * np.power(d_model, -0.5) * np.min([
X
xiaoting 已提交
68 69
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
70 71 72

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
73 74 75

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
76

77 78
        warmup_steps(Variable): A super parameter.

79 80 81 82
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0

83 84
    Returns:
        The decayed learning rate.
X
xiaoting 已提交
85 86 87
    Examples:
        .. code-block:: python

88
          import paddle.fluid as fluid
X
xiaoting 已提交
89 90 91 92
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
93 94
                         warmup_steps,
                         learning_rate)
95
    """
96
    with default_main_program()._lr_schedule_guard():
97
        if in_dygraph_mode():
98 99
            decay = imperate_lr.NoamDecay(
                d_model, warmup_steps, learning_rate=learning_rate)
M
minqiyang 已提交
100 101 102
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
103

M
minqiyang 已提交
104 105
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
106 107
            lr_value = learning_rate * (d_model**-0.5) * nn.elementwise_min(a,
                                                                            b)
108

M
minqiyang 已提交
109
            return lr_value
110 111


Y
Yu Yang 已提交
112
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
113
    """
114
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
115

116 117
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
118 119
    'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
120
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
121

F
fengjiayi 已提交
122 123 124 125
    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
126 127

    Args:
K
Kaipeng Deng 已提交
128 129 130 131 132 133 134 135
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` every
                         `decay_steps`. If False, learning rate will be decayed continuously
                         and following the formula above. Default: False
Q
Qiao Longfei 已提交
136 137

    Returns:
K
Kaipeng Deng 已提交
138
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
139 140 141 142

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
143
          import paddle.fluid as fluid
F
fengjiayi 已提交
144 145
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
146 147 148 149 150
	      learning_rate=fluid.layers.exponential_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
F
fengjiayi 已提交
151

Q
Qiao Longfei 已提交
152
    """
153
    with default_main_program()._lr_schedule_guard():
154
        if in_dygraph_mode():
155 156 157 158 159
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
160

161 162 163 164
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
165

166
            return decayed_lr
Q
Qiao Longfei 已提交
167 168


Y
Yu Yang 已提交
169
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
170 171
    """Applies natural exponential decay to the initial learning rate.

K
Kaipeng Deng 已提交
172 173 174 175
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
    natural exponential power 'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
176
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
177

Y
Yu Yang 已提交
178 179 180
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
181
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Y
Yu Yang 已提交
182

Q
Qiao Longfei 已提交
183
    Args:
K
Kaipeng Deng 已提交
184 185 186 187 188
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
T
tianshuo78520a 已提交
189
                         means the learning rate will be decayed by natural exponential power
K
Kaipeng Deng 已提交
190 191
                         `decay_rate` every `decay_steps`. If False, learning rate will be
                         decayed continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
192 193

    Returns:
K
Kaipeng Deng 已提交
194
        The decayed learning rate. The data type is float32.
K
Kaipeng Deng 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))

Q
Qiao Longfei 已提交
208
    """
209
    with default_main_program()._lr_schedule_guard():
210
        if in_dygraph_mode():
211 212 213 214 215
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
216

217 218 219 220
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
221

222
            return decayed_lr
Q
Qiao Longfei 已提交
223 224


Y
Yu Yang 已提交
225
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
226 227
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
228

229 230
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
231
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
232

T
tianshuo78520a 已提交
233
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
234

F
fengjiayi 已提交
235
    >>> if staircase == True:
Y
Yu Yang 已提交
236 237 238 239
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
240
    Args:
K
Kaipeng Deng 已提交
241 242 243 244 245 246 247 248
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` times 
                         every `decay_steps`. If False, learning rate will be decayed 
                         continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
249 250

    Returns:
K
Kaipeng Deng 已提交
251
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
252 253 254 255

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
256
          import paddle.fluid as fluid
F
fengjiayi 已提交
257 258
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
259
	      learning_rate=fluid.layers.inverse_time_decay(
K
Kaipeng Deng 已提交
260 261 262 263
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
Q
Qiao Longfei 已提交
264
    """
265
    with default_main_program()._lr_schedule_guard():
266
        if in_dygraph_mode():
267 268 269 270 271
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
272

273 274 275
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
276

277
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
278

279
            return decayed_lr
280 281 282 283 284 285 286


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
287 288 289
    """
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
290
    .. code-block:: text
Q
qiaolongfei 已提交
291 292 293 294 295 296 297

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
298 299

    Args:
Q
qiaolongfei 已提交
300
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
301
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
302
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
303 304 305
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
306 307

    Returns:
Q
update  
qiaolongfei 已提交
308
        Variable: The decayed learning rate
X
xiaoting 已提交
309 310 311 312 313 314 315 316 317 318 319

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

320
    """
321
    with default_main_program()._lr_schedule_guard():
322
        if in_dygraph_mode():
323 324 325
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
326
        else:
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
345

346 347 348
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
349 350


Y
Yu Yang 已提交
351
def piecewise_decay(boundaries, values):
352 353
    """Applies piecewise decay to the initial learning rate.

X
xiaoting 已提交
354
    The algorithm can be described as the code below.
X
Xin Pan 已提交
355

X
xiaoting 已提交
356
    .. code-block:: text
X
Xin Pan 已提交
357

X
xiaoting 已提交
358 359 360 361 362 363 364 365
      boundaries = [10000, 20000]
      values = [1.0, 0.5, 0.1]
      if step < 10000:
          learning_rate = 1.0
      elif 10000 <= step < 20000:
          learning_rate = 0.5
      else:
          learning_rate = 0.1
X
Xin Pan 已提交
366 367 368 369 370 371 372 373
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
xiaoting 已提交
374 375 376 377 378 379 380 381 382 383 384
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          optimizer = fluid.optimizer.Momentum(
              momentum=0.9,
              learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
              regularization=fluid.regularizer.L2Decay(1e-4))

X
Xin Pan 已提交
385

386
    """
387 388 389 390
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

391
        if in_dygraph_mode():
M
minqiyang 已提交
392
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
393 394 395
            return decay
        else:
            global_step = _decay_step_counter()
396

397 398 399 400 401 402
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
403

404 405 406 407 408 409 410 411 412 413 414 415
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
416 417
                    shape=[1],
                    dtype='float32',
418 419 420
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
421

422
            return lr
W
Wu Yi 已提交
423 424


S
shippingwang 已提交
425 426 427 428
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
429
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
430 431
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
432

433 434
    .. math::

X
xsrobin 已提交
435 436
        decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)

S
shippingwang 已提交
437 438 439 440 441
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

442
    Returns:
X
xsrobin 已提交
443
        Variable: The decayed learning rate.
S
shippingwang 已提交
444

445
    Examples:
X
xsrobin 已提交
446
        .. code-block:: python
S
shippingwang 已提交
447

X
xsrobin 已提交
448 449 450 451
            import paddle.fluid as fluid
            base_lr = 0.1
            lr = fluid.layers.cosine_decay(
            learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
452
    """
453 454
    check_type(learning_rate, 'learning_rate', (float, tensor.Variable),
               'cosine_decay')
455

S
shippingwang 已提交
456
    with default_main_program()._lr_schedule_guard():
457
        if in_dygraph_mode():
M
minqiyang 已提交
458 459 460 461 462
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
463

M
minqiyang 已提交
464 465 466 467
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
468 469


470 471
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When global_step < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When global_step >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is the learning_rate after warm-up.
    
492
    Args:
493 494 495 496 497
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
    
498
    Returns:
499 500 501
        Variable: Warm-up learning rate with the same data type as learning_rate.
    
    
502
    Examples:
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    
    .. code-block:: python
    
        import paddle.fluid as fluid
    
        boundaries = [100, 200]
        lr_steps = [0.1, 0.01, 0.001]
        learning_rate = fluid.layers.piecewise_decay(boundaries, lr_steps) #case1, 1D-Tensor
        #learning_rate = 0.1  #case2, single-value
        warmup_steps = 50
        start_lr = 1. / 3.
        end_lr = 0.1
        decayed_lr = fluid.layers.linear_lr_warmup(learning_rate,
            warmup_steps, start_lr, end_lr)
    
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        out, = exe.run(fetch_list=[decayed_lr.name])
        print(out)
        # case1: [0.33333334]
        # case2: [0.33333334]
525
    """
Q
qingqing01 已提交
526 527 528 529 530
    dtype = 'float32'
    if isinstance(learning_rate, Variable):
        dtype = learning_rate.dtype

    linear_step = float(end_lr) - float(start_lr)
531
    with default_main_program()._lr_schedule_guard():
H
hong 已提交
532

533
        if in_dygraph_mode():
H
hong 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
            lr = imperate_lr.LinearLrWarmup(learning_rate, warmup_steps,
                                            start_lr, end_lr)
            return lr
        else:
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype=dtype,
                persistable=True,
                name="learning_rate_warmup")

            global_step = _decay_step_counter()

            with control_flow.Switch() as switch:
                with switch.case(global_step < warmup_steps):
                    decayed_lr = start_lr + linear_step * (global_step /
                                                           float(warmup_steps))
                    tensor.assign(decayed_lr, lr)
                with switch.default():
                    if not isinstance(learning_rate, Variable):
                        learning_rate = tensor.fill_constant(
                            shape=[1], dtype=dtype, value=float(learning_rate))
                    tensor.assign(learning_rate, lr)
            return lr