learning_rate_scheduler.py 16.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26
import math

27 28 29 30
from . import control_flow
from . import nn
from . import ops
from . import tensor
31
from ..initializer import init_on_cpu
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
M
minqiyang 已提交
33 34
from ..dygraph import base as imperative_base
from ..dygraph import learning_rate_scheduler as imperate_lr
Q
Qiao Longfei 已提交
35

36 37
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
38 39
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
40
]
Q
Qiao Longfei 已提交
41 42


43
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
44
    # the first global step is zero in learning rate decay
45
    global_step = nn.autoincreased_step_counter(
46
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
47
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
48 49 50
    return global_step


51
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
52 53 54
    """
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
55 56
    .. code-block:: python
      
57
      import padde.fluid as fluid
X
xiaoting 已提交
58 59 60 61 62 63 64 65 66
      import numpy as np
      # set hyper parameters
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
      lr_value = np.power(d_model, -0.5) * np.min([
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
67 68 69

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
70 71 72

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
73

74 75 76 77
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
X
xiaoting 已提交
78 79 80 81 82 83 84 85 86
    Examples:
        .. code-block:: python

          import padde.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
                         warmup_steps)
87
    """
88
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
89 90 91 92 93
        if imperative_base.enabled():
            decay = imperate_lr.NoamDecay(d_model, warmup_steps)
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
94

M
minqiyang 已提交
95 96 97
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
            lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
98

M
minqiyang 已提交
99
            return lr_value
100 101


Y
Yu Yang 已提交
102
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
103
    """
104
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
105

106 107
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
108 109 110 111 112 113
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
114 115

    Args:
F
fengjiayi 已提交
116 117 118 119 120
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
121 122

    Returns:
F
fengjiayi 已提交
123
        Variable: The decayed learning rate
F
fengjiayi 已提交
124 125 126 127

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
128
          import paddle.fluid as fluid
F
fengjiayi 已提交
129 130
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
131 132 133 134 135
	      learning_rate=fluid.layers.exponential_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
F
fengjiayi 已提交
136

Q
Qiao Longfei 已提交
137
    """
138
    with default_main_program()._lr_schedule_guard():
139 140 141 142 143 144
        if imperative_base.enabled():
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
145

146 147 148 149
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
150

151
            return decayed_lr
Q
Qiao Longfei 已提交
152 153


Y
Yu Yang 已提交
154
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
155 156
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
157 158 159 160 161
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
162 163 164 165 166 167 168 169 170
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
K
Kaipeng Deng 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))

Q
Qiao Longfei 已提交
184
    """
185
    with default_main_program()._lr_schedule_guard():
186 187 188 189 190 191
        if imperative_base.enabled():
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
192

193 194 195 196
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
197

198
            return decayed_lr
Q
Qiao Longfei 已提交
199 200


Y
Yu Yang 已提交
201
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
202 203
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
204

205 206
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
207
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
208

F
fengjiayi 已提交
209
    >>> if staircase == True:
Y
Yu Yang 已提交
210 211 212 213
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
214
    Args:
F
fengjiayi 已提交
215 216 217 218 219
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
220 221

    Returns:
F
fengjiayi 已提交
222
        Variable: The decayed learning rate
F
fengjiayi 已提交
223 224 225 226

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
227
          import paddle.fluid as fluid
F
fengjiayi 已提交
228 229
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
230 231 232 233 234
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
Q
Qiao Longfei 已提交
235
    """
236
    with default_main_program()._lr_schedule_guard():
237 238 239 240 241 242
        if imperative_base.enabled():
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
243

244 245 246
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
247

248
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
249

250
            return decayed_lr
251 252 253 254 255 256 257


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
258 259 260
    """
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
261
    .. code-block:: text
Q
qiaolongfei 已提交
262 263 264 265 266 267 268

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
269 270

    Args:
Q
qiaolongfei 已提交
271
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
272
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
273
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
274 275 276
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
277 278

    Returns:
Q
update  
qiaolongfei 已提交
279
        Variable: The decayed learning rate
X
xiaoting 已提交
280 281 282 283 284 285 286 287 288 289 290

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

291
    """
292
    with default_main_program()._lr_schedule_guard():
293 294 295 296
        if imperative_base.enabled():
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
297
        else:
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
316

317 318 319
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
320 321


Y
Yu Yang 已提交
322
def piecewise_decay(boundaries, values):
323 324
    """Applies piecewise decay to the initial learning rate.

X
xiaoting 已提交
325
    The algorithm can be described as the code below.
X
Xin Pan 已提交
326

X
xiaoting 已提交
327
    .. code-block:: text
X
Xin Pan 已提交
328

X
xiaoting 已提交
329 330 331 332 333 334 335 336
      boundaries = [10000, 20000]
      values = [1.0, 0.5, 0.1]
      if step < 10000:
          learning_rate = 1.0
      elif 10000 <= step < 20000:
          learning_rate = 0.5
      else:
          learning_rate = 0.1
X
Xin Pan 已提交
337 338 339 340 341 342 343 344
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
xiaoting 已提交
345 346 347 348 349 350 351 352 353 354 355
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          optimizer = fluid.optimizer.Momentum(
              momentum=0.9,
              learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
              regularization=fluid.regularizer.L2Decay(1e-4))

X
Xin Pan 已提交
356

357
    """
358 359 360 361
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

362
        if imperative_base.enabled():
M
minqiyang 已提交
363
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
364 365 366
            return decay
        else:
            global_step = _decay_step_counter()
367

368 369 370 371 372 373
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
374

375 376 377 378 379 380 381 382 383 384 385 386
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
387 388
                    shape=[1],
                    dtype='float32',
389 390 391
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
392

393
            return lr
W
Wu Yi 已提交
394 395


S
shippingwang 已提交
396 397 398 399
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
400
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
401 402
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
403

404 405 406
    .. math::

	decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)
S
shippingwang 已提交
407 408 409 410 411 412
    
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

413 414
    Returns:
	Variable: The decayed learning rate.
S
shippingwang 已提交
415

416 417
    Examples:
	.. code-block:: python
S
shippingwang 已提交
418

419 420
  	    import paddle.fluid as fluid
        base_lr = 0.1
421 422
	    lr = fluid.layers.cosine_decay(
	    learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
423
    """
424

S
shippingwang 已提交
425
    with default_main_program()._lr_schedule_guard():
M
minqiyang 已提交
426 427 428 429 430 431
        if imperative_base.enabled():
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
432

M
minqiyang 已提交
433 434 435 436
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
437 438


439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
    Applies linear learning rate warmup before the normal learning rate
    scheduling.

    .. code-block:: python

     if global_step < warmup_steps:
         linear_step = end_lr - start_lr
         lr = start_lr + linear_step * (global_step / warmup_steps)

    Args:
        learning_rate (float | Variable): A float value or Variable.
        warmup_steps (int): The warmup steps.
        start_lr (float): The start learning of warmup.
        end_lr (float): The end learning of warmup.

    Returns:
        The decayed learning rate in warmup period.

    Examples:
        .. code-block:: python

462
            import paddle.fluid as fluid
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
            boundaries = [100, 200]
            lr_steps = [0.1, 0.01, 0.001]
            warmup_steps = 50 
            start_lr = 1. / 3. 
            end_lr = 0.1
            decayed_lr = fluid.layers.linear_lr_warmup(
                fluid.layers.piecewise_decay(boundaries, lr_steps),
                warmup_steps, start_lr, end_lr)

    """
    assert (isinstance(end_lr, float))
    assert (isinstance(start_lr, float))
    linear_step = end_lr - start_lr
    with default_main_program()._lr_schedule_guard():
        lr = tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate_warmup")

        global_step = _decay_step_counter()

        with control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                decayed_lr = start_lr + linear_step * (global_step /
                                                       float(warmup_steps))
                tensor.assign(decayed_lr, lr)
            with switch.default():
                tensor.assign(learning_rate, lr)
    return lr