framework.py 76.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28
try:
P
peizhilin 已提交
29
    if os.name == 'nt':
P
peizhilin 已提交
30
        import sys
P
peizhilin 已提交
31 32 33 34 35
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

36
    from . import core
37
except ImportError as e:
P
peizhilin 已提交
38 39 40 41 42 43 44 45 46 47 48 49
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
50
except Exception as e:
51
    raise e
52
from . import unique_name
Y
Yu Yang 已提交
53

54
__all__ = [
55 56 57 58
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
59
    'name_scope',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

68 69 70 71 72 73 74 75 76 77
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
118

119 120 121 122
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
123 124
          with name_scope("attention"):
             ...
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
144 145 146
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
147 148 149 150


def grad_var_name(var_name):
    """
151 152
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
153 154 155
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
156

157
def convert_np_dtype_to_dtype_(np_dtype):
158 159
    """
    Convert the data type in numpy to the data type in Paddle
160

161
    Args:
162
        np_dtype(np.dtype): the data type in numpy.
163

164 165
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
166 167

    """
168 169
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
170
        return core.VarDesc.VarType.FP32
171
    elif dtype == np.float64:
172
        return core.VarDesc.VarType.FP64
173
    elif dtype == np.float16:
174
        return core.VarDesc.VarType.FP16
175
    elif dtype == np.int32:
176
        return core.VarDesc.VarType.INT32
177
    elif dtype == np.int16:
178
        return core.VarDesc.VarType.INT16
179
    elif dtype == np.int64:
180
        return core.VarDesc.VarType.INT64
181
    elif dtype == np.bool:
182
        return core.VarDesc.VarType.BOOL
183 184
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
185 186
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
187 188
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
189
    else:
M
minqiyang 已提交
190
        raise ValueError("Not supported numpy dtype %s" % dtype)
191 192 193


def dtype_is_floating(dtype):
194 195 196
    """
    Check the data type is floating or not.
    Args:
197
        dtype(np.dtype|core.VarDesc.VarType): data type.
198 199 200 201 202
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
203
    if not isinstance(dtype, core.VarDesc.VarType):
204 205
        dtype = convert_np_dtype_to_dtype_(dtype)

206 207 208 209
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
210 211


Y
Yang Yang(Tony) 已提交
212
def _debug_string_(proto, throw_on_error=True):
213 214 215 216 217 218 219 220 221 222 223
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
224
    error_fields = list()
Y
Yang Yang(Tony) 已提交
225
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
226 227
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
228 229 230
    return proto.__str__()


X
Xin Pan 已提交
231
class Variable(object):
232
    """
233 234 235
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
236
    two variables in different blocks could have the same name.
237

238 239
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
240

241
    Most of a Variable's member variables can be setted to be None. It mean
242
    it is not available or will be specified later.
243 244

    Args:
245
        block(Block): The block that the variable belongs to.
246 247
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
248 249
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
250
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
251
            Some kinds of variable do not contain shape, just set it to None.
252 253 254
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
255
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
256
            series data.
257
            Default: None
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
280 281
    """

Y
Yu Yang 已提交
282 283
    def __init__(self,
                 block,
Y
Yu Yang 已提交
284
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
285 286 287 288
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
289
                 capacity=None,
Q
QI JUN 已提交
290
                 persistable=None,
F
fengjiayi 已提交
291
                 error_clip=None,
Y
Yu Yang 已提交
292
                 stop_gradient=False,
F
fengjiayi 已提交
293
                 is_data=False,
Y
Yu Yang 已提交
294
                 **kwargs):
Y
Yu Yang 已提交
295
        self.block = block
F
fengjiayi 已提交
296
        self.error_clip = error_clip
Y
Yu Yang 已提交
297 298

        if name is None:
Y
Yu Yang 已提交
299
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
300
        is_new_var = False
M
minqiyang 已提交
301
        name = cpt.to_text(name)
M
minqiyang 已提交
302
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
303 304

        if self.desc is None:
M
minqiyang 已提交
305
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
306
            is_new_var = True
Y
Yu Yang 已提交
307

Y
Yu Yang 已提交
308 309 310 311 312 313 314 315
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
316
        if shape is not None:
Y
Yu Yang 已提交
317
            if is_new_var:
318
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
327
        if dtype is not None:
328
            if not isinstance(dtype, core.VarDesc.VarType):
329
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
330
            if is_new_var:
F
fengjiayi 已提交
331
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
332
            else:
F
fengjiayi 已提交
333
                old_dtype = self.dtype
Q
QI JUN 已提交
334
                if dtype != old_dtype:
Y
Yu Yang 已提交
335 336 337 338 339
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
340 341

        if lod_level is not None:
Y
Yu Yang 已提交
342
            if is_new_var:
343
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
344 345 346 347 348 349 350
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
351 352 353 354 355 356 357 358 359 360 361
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

362 363 364 365 366 367 368 369
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
370
        self.block.vars[name] = self
Y
Yu Yang 已提交
371
        self.op = None
M
minqiyang 已提交
372
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
373
        self.is_data = is_data
X
Xin Pan 已提交
374
        if _in_imperative_mode():
M
minqiyang 已提交
375 376 377
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
378
            self._ivar.desc = self.desc
379
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    @staticmethod
    def construct_from_desc(block, desc):
        """
        Construct a Variable from variable desc.
        Args:
            desc(core.VarDesc): The  variable desc for constructing.

        Returns:
            Variable: A variable.
        """
        v = Variable(
            block=block,
            type=desc.type(),
            name=desc.name(),
            shape=desc.shape(),
            dtype=desc.dtype(),
            lod_level=desc.lod_level(),
            persistable=desc.persistable())
        v.desc = desc
        return v

402
    def _numpy(self):
M
minqiyang 已提交
403
        tensor = self._ivar.value().get_tensor()
404 405 406
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
407
        self._ivar._run_backward()
408 409

    def _gradient(self):
M
minqiyang 已提交
410
        return np.array(self._ivar._grad_value())
411

412
    def __str__(self):
Y
Yang Yang(Tony) 已提交
413 414
        return self.to_string(True)

F
update  
fengjiayi 已提交
415
    def to_string(self, throw_on_error, with_details=False):
416 417 418 419
        """
        Get debug string.

        Args:
420 421
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
422
            with_details(bool): more details about variables and parameters
423 424
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
425

426 427
        Returns:
            str: The debug string.
428
        """
F
update  
fengjiayi 已提交
429 430
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
431
        protostr = self.desc.serialize_to_string()
432
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
433 434 435 436
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
437 438
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
439
        return res_str
440 441 442

    __repr__ = __str__

W
Wu Yi 已提交
443
    def _set_desc(self, input):
444 445 446 447 448 449 450 451 452
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
453 454
        self.desc = input

455 456 457 458 459 460 461 462
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

463 464 465 466
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
467 468 469 470
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
471 472
    @property
    def name(self):
M
minqiyang 已提交
473
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
474

T
typhoonzero 已提交
475 476 477 478
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
479 480 481
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
482
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
483 484

    @property
F
fengjiayi 已提交
485 486
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
487 488 489

    @property
    def lod_level(self):
490
        return self.desc.lod_level()
Y
Yu Yang 已提交
491

Y
Yu Yang 已提交
492 493 494 495
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
496
    def _set_error_clip(self, error_clip):
497 498 499 500 501 502 503 504 505
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
506 507
        self.error_clip = error_clip

Y
Yu Yang 已提交
508

F
fengjiayi 已提交
509 510 511
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
512

513 514
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
515 516 517 518
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
519
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
520 521 522 523 524
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
525 526 527 528
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
529 530 531 532 533 534 535 536 537
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
538
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
539 540 541 542 543 544
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
545 546 547 548 549 550 551 552
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
553 554
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
555 556
        return self.op_proto_map[type]

557 558 559 560
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
561
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
562
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
563 564
        }

F
fengjiayi 已提交
565

X
Xin Pan 已提交
566
class Operator(object):
567
    """
568 569 570 571 572 573 574
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
575
        type(str): The type of operator. Default None.
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
596
        Block.append_op or Block._prepend_op instead.
597 598 599 600 601 602 603 604 605 606

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
607
    """
608 609 610
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
611 612
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
613
    }
614

Y
Yu Yang 已提交
615 616
    def __init__(self,
                 block,
Y
Yu Yang 已提交
617
                 desc,
Y
Yu Yang 已提交
618 619 620
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
621
                 attrs=None):
Y
Yu Yang 已提交
622
        self.block = block
Y
Yu Yang 已提交
623
        self.desc = desc
G
gongweibao 已提交
624 625 626 627 628
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
629 630 631 632
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
633 634
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
635 636 637

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
638 639
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
640

G
gongweibao 已提交
641 642
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
643

F
fengjiayi 已提交
644 645 646 647 648
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
649
        self.desc.set_type(type)
F
fengjiayi 已提交
650
        proto = OpProtoHolder.instance().get_op_proto(type)
651

652 653 654
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
655 656
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
657
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
658 659
                    return True
            return False
Q
QI JUN 已提交
660

Y
Yang Yang(Tony) 已提交
661 662 663 664 665 666 667
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
668 669 670 671
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
672 673
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
674 675 676
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
677
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
678
                            in_arg_names.append(arg)
679 680
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
681
                        else:
M
minqiyang 已提交
682
                            in_arg_names.append(cpt.to_text(arg.name))
683
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
684 685
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
686

Y
Yu Yang 已提交
687
        if outputs is not None:
688
            for m in proto.outputs:
Q
qingqing01 已提交
689 690 691 692 693 694
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
695
            for out_proto in proto.outputs:
Q
qingqing01 已提交
696 697
                if out_proto.name not in outputs:
                    continue
698 699 700 701
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
702 703
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
704 705 706
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
707
                    out_arg_names.append(cpt.to_text(arg.name))
708 709
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
710

G
gongweibao 已提交
711 712
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
713
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
714
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
715
                attr_name = attr.name
G
gongweibao 已提交
716
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
717
                    continue
G
gongweibao 已提交
718
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
719 720
                self._update_desc_attr(attr_name, attr_val)

721
        self.desc.check_attrs()
M
minqiyang 已提交
722

W
Wu Yi 已提交
723
        if self._has_kernel(type):
Q
QI JUN 已提交
724
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
725
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
726

X
Xin Pan 已提交
727 728 729
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
730
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
731
            if inputs is not None:
X
Xin Pan 已提交
732 733 734 735 736 737
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
738
            if outputs is not None:
X
Xin Pan 已提交
739 740 741 742 743
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
744

W
Wu Yi 已提交
745
    def _has_kernel(self, op_type):
746 747
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
748
    def to_string(self, throw_on_error):
749
        """
750 751
        Get debug string.

752
        Args:
753 754
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
755

756 757
        Returns:
            str: The debug string.
758 759

        """
760
        protostr = self.desc.serialize_to_string()
761
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
762 763 764 765
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
766 767 768

    __repr__ = __str__

F
fengjiayi 已提交
769 770 771 772 773
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
774
        """
775
        Get the input arguments according to the input parameter name.
776

777 778
        Args:
            name(str): The input parameter name.
779

780 781 782
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
783
        """
F
fengjiayi 已提交
784 785
        return self.desc.input(name)

W
Wu Yi 已提交
786
    def _rename_input(self, old_name, new_name):
787 788 789 790 791 792 793 794 795 796
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
797
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
798

W
Wu Yi 已提交
799
    def _rename_output(self, old_name, new_name):
800 801 802 803 804 805 806 807 808 809
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
810
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
811

F
fengjiayi 已提交
812 813 814 815
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
816 817 818 819 820 821 822 823
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
824
    def output(self, name):
825
        """
826
        Get output arguments by the output parameter name.
827

828 829
        Args:
            name(str): The output parameter name.
830

831 832 833
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
834
        """
F
fengjiayi 已提交
835 836 837 838 839 840
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

841 842 843 844 845 846 847 848
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
849
    def has_attr(self, name):
850
        """
851 852
        Whether this Operator has the attribute with name or not.

853
        Args:
854
            name(str): the attribute name.
855

856 857
        Returns:
            bool: True if has this attribute.
858 859

        """
F
fengjiayi 已提交
860 861 862
        return self.desc.has_attr(name)

    def attr_type(self, name):
863
        """
864
        Get the type of attribute by attribute's name.
865

866 867
        Args:
            name(str): the attribute name.
868

869 870
        Returns:
            core.AttrType: the attribute type.
871
        """
F
fengjiayi 已提交
872 873
        return self.desc.attr_type(name)

W
Wu Yi 已提交
874
    def _set_attr(self, name, val):
875 876 877 878 879 880 881 882 883 884
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
898 899
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
900 901
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
902
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
903 904 905 906
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
907
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
908

F
fengjiayi 已提交
909 910 911 912 913
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
914
        """
915 916
        Get the attribute by name.

917
        Args:
918
            name(str): the attribute name.
919

920 921
        Returns:
            bool|int|str|float|list: The attribute value. The return value
922 923
            can be any valid attribute type.
        """
F
fengjiayi 已提交
924
        return self.desc.attr(name)
Y
Yu Yang 已提交
925

W
Wu Yi 已提交
926
    def _block_attr_id(self, name):
927
        """
G
gongweibao 已提交
928
        Get the block attribute's id by name.
929

930 931
        Args:
            name(str): the attribute name.
932

933 934
        Returns:
            int: the block index.
935
        """
W
Wu Yi 已提交
936
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
937

W
Wu Yi 已提交
938
    def _block_attr(self, name):
G
gongweibao 已提交
939 940 941 942 943 944 945 946 947 948
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
949
        id = self._block_attr_id(name)
G
gongweibao 已提交
950 951 952
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
953
    def _blocks_attr(self, name):
G
gongweibao 已提交
954 955 956 957 958 959 960 961 962 963
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
964
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
965 966 967 968 969
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
970
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
971 972 973 974 975 976 977 978 979 980
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
981
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
982

J
JiayiFeng 已提交
983
    def all_attrs(self):
F
fengjiayi 已提交
984
        """
985 986 987
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
988
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
989 990 991 992
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
993 994
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
995
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
996 997 998
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
999
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1000 1001 1002 1003
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1004 1005
        return attr_map

Y
Yu Yang 已提交
1006

Y
Yu Yang 已提交
1007
class Block(object):
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1022
        use `Program._create_block()` to create a block.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1037
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1038
        self.desc = program.desc.block(idx)
1039
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1040
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1041
        self.program = program
1042
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1043

1044
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1045 1046
        return self.to_string(True)

F
fengjiayi 已提交
1047 1048
    def to_string(self, throw_on_error, with_details=False):
        """
1049 1050
        Get debug string.

F
fengjiayi 已提交
1051 1052
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1053
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1054
            with_details(bool): more details about variables and parameters
1055 1056
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1057

1058 1059
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1060 1061 1062 1063
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1064
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1065 1066
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1067
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1068
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1069
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1070
            for op in self.ops:
F
fengjiayi 已提交
1071 1072
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1073 1074 1075
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1076 1077
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1078 1079
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1080 1081 1082

    __repr__ = __str__

Y
Yu Yang 已提交
1083 1084
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1085
        return self.desc.parent
Y
Yu Yang 已提交
1086

Y
Yu Yang 已提交
1087 1088 1089 1090
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1091
    def _set_forward_block_idx(self, idx):
1092 1093 1094 1095 1096 1097 1098 1099 1100
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1101
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1102

Y
Yu Yang 已提交
1103 1104
    @property
    def idx(self):
Y
Yu Yang 已提交
1105
        return self.desc.id
Y
Yu Yang 已提交
1106

Q
Qiao Longfei 已提交
1107
    def var(self, name):
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1121
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1122 1123 1124
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1125 1126
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1127
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1128
        return v
Q
Qiao Longfei 已提交
1129

X
Xin Pan 已提交
1130
    def _find_var_recursive(self, name):
1131 1132 1133 1134 1135 1136 1137
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1138
            Variable: the Variable with the giving name. Or None if not found.
1139
        """
Y
Yu Yang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1164
        return None
Y
Yu Yang 已提交
1165

X
Xin Pan 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1185

Q
Qiao Longfei 已提交
1186
    def all_parameters(self):
1187
        return list(self.iter_parameters())
1188

1189
    def iter_parameters(self):
M
minqiyang 已提交
1190
        return (item[1] for item in six.iteritems(self.vars)
1191
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1192

Y
Yu Yang 已提交
1193
    def create_var(self, *args, **kwargs):
1194
        var = Variable(block=self, *args, **kwargs)
1195 1196
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1197
        return var
Y
Yu Yang 已提交
1198

Q
Qiao Longfei 已提交
1199 1200 1201
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1202
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1203 1204
        """
        Rename variable in vars and ops' inputs and outputs
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1217
        """
M
minqiyang 已提交
1218 1219
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1220

T
typhoonzero 已提交
1221
        if not self.has_var(name):
1222
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1223 1224
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1225
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1226 1227 1228 1229 1230 1231 1232
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1233
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1234 1235 1236 1237
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1238
        orig_var_type = v.type
M
minqiyang 已提交
1239
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1240
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1241
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1242
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1243 1244 1245 1246
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1247
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1248 1249 1250 1251 1252 1253 1254
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1255
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1256 1257
            var = Variable(
                self,
T
typhoonzero 已提交
1258
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1259 1260 1261 1262
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1263
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1264 1265 1266
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1267
        self._sync_with_cpp()
1268
        return var
T
typhoonzero 已提交
1269

W
Wu Yi 已提交
1270 1271
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1272
        self.desc._remove_var(cpt.to_bytes(name))
1273 1274
        del self.vars[name]

Y
Yu Yang 已提交
1275 1276
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1277
        param = Parameter(global_block, *args, **kwargs)
1278
        if 'initializer' in kwargs:
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1299
        return param
Y
Yu Yang 已提交
1300

Y
Yu Yang 已提交
1301
    def append_op(self, *args, **kwargs):
1302 1303 1304 1305 1306 1307
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1308
        op_desc = self.desc.append_op()
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1321
        if _in_imperative_mode():
1322
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1323
                                       stop_gradient)
Y
Yu Yang 已提交
1324

W
Wu Yi 已提交
1325
    def _insert_op(self, index, *args, **kwargs):
1326 1327 1328 1329 1330 1331 1332 1333 1334
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1335 1336
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1337 1338 1339 1340
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1341
    def _remove_op(self, index):
1342 1343 1344 1345 1346 1347 1348 1349 1350
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1351 1352
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1353 1354
        del self.ops[index]

W
Wu Yi 已提交
1355
    def _slice_ops(self, start, end):
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1366
        return self.ops[start:end]
Y
Yancey1989 已提交
1367

W
Wu Yi 已提交
1368 1369
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1370 1371 1372 1373 1374 1375 1376
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1377
        self.ops.insert(0, op)
1378
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1379 1380
        return op

W
Wu Yi 已提交
1381
    def _sync_with_cpp(self):
1382
        """
1383 1384
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1385
        """
Q
Qiao Longfei 已提交
1386 1387 1388 1389 1390
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1391
        # sync variables removed from c++ end
1392
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1393
            if not self.desc.find_var(cpt.to_bytes(var)):
1394 1395
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1396
        # sync operators from cpp
1397 1398 1399 1400
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1417 1418 1419 1420 1421

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1422
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1423 1424 1425 1426 1427 1428 1429

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1443 1444 1445 1446
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1447
    def _copy_param_info_from(self, other):
1448
        """
1449 1450
        Copy the information of parameters from the other block.

1451
        Args:
1452 1453 1454 1455 1456
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1457 1458 1459 1460 1461

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1462 1463
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1464
        for p in other.iter_parameters():
1465 1466 1467
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1468
                raise ValueError("_copy_param_info_from should be invoked with "
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1481
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1482
                error_clip=p.error_clip,
1483 1484 1485
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1486
    def _clone_variable(self, var):
1487 1488
        """
        Clone a variable into current block.
1489

1490 1491 1492 1493
        Args:
            var: the variable to be cloned.

        Returns:
1494
            Variable: the new  variable cloned from 'var' in current block.
1495 1496
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1497 1498 1499 1500 1501
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1502 1503
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1504
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1505 1506 1507 1508 1509 1510
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1511 1512
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1513 1514 1515 1516 1517 1518 1519
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1520 1521
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1522
        return ret_var
1523

Y
Yu Yang 已提交
1524 1525

class Program(object):
D
dzhwinter 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1537
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1538 1539

    Returns:
Y
yuyang18 已提交
1540
        A empty program.
D
dzhwinter 已提交
1541 1542

    Examples:
Y
yuyang18 已提交
1543 1544 1545 1546 1547 1548
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1549 1550 1551

    """

1552 1553
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1554 1555
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1556
        self._seed = 0
Y
yuyang18 已提交
1557
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1558
        self._op_role_var = []
T
tangwei12 已提交
1559 1560 1561 1562

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1563
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1564
        self._endpoints = []
1565
        self._trainers_endpoints = []
T
tangwei12 已提交
1566
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1567 1568 1569

    @property
    def op_role(self):
Y
yuyang18 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1583 1584 1585 1586 1587 1588 1589 1590
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1591 1592 1593 1594 1595 1596 1597
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1598 1599 1600 1601
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1602
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1603 1604

    @contextlib.contextmanager
W
Wu Yi 已提交
1605
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1606 1607 1608 1609 1610 1611 1612
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1613
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1614 1615 1616 1617

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1618
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1619 1620
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1621 1622 1623
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1624 1625
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1626 1627 1628 1629
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1630
        yield
X
Xin Pan 已提交
1631 1632
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1633

1634
    @contextlib.contextmanager
X
Xin Pan 已提交
1635
    def _lr_schedule_guard(self, is_with_opt=False):
1636 1637 1638 1639 1640 1641 1642
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1643 1644 1645 1646
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1647 1648 1649 1650 1651 1652 1653

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1654 1655 1656 1657

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1658 1659
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1660 1661
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1662 1663 1664
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1665 1666
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1667

1668
    def __str__(self):
Y
yuyang18 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1678 1679
        return self.to_string(True)

F
fengjiayi 已提交
1680 1681 1682
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1683

F
fengjiayi 已提交
1684
        Args:
Y
yuyang18 已提交
1685 1686
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1687

Y
yuyang18 已提交
1688 1689 1690 1691
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1692 1693
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1694 1695 1696 1697

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1708 1709
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1710 1711
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1712

W
Wu Yi 已提交
1713
    def _get_desc(self):
Y
yuyang18 已提交
1714 1715 1716 1717 1718 1719 1720
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1721 1722
        return self.desc

X
version  
Xin Pan 已提交
1723 1724 1725
    def _version(self):
        return self.desc._version()

1726
    def clone(self, for_test=False):
Y
yuyang18 已提交
1727 1728 1729
        """
        Create a new, duplicated program.

1730

Y
yuyang18 已提交
1731 1732 1733 1734
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1735

Y
yuyang18 已提交
1736 1737 1738 1739
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1740 1741 1742 1743 1744
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1745 1746

        Args:
Y
yuyang18 已提交
1747 1748
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1749

D
dzhwinter 已提交
1750
        Returns:
Y
yuyang18 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1804 1805
        """
        if for_test:
X
Xin Pan 已提交
1806
            p = self._inference_optimize(prune_read_op=False)
1807
        else:
1808
            p = Program()
G
gongweibao 已提交
1809 1810
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1811
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1812 1813 1814
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1815 1816 1817 1818

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1819
            p._sync_with_cpp()
1820

W
Wu Yi 已提交
1821
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1822
        p._copy_data_info_from(self)
1823
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1824
        return p
1825

W
Wu Yi 已提交
1826
    def _prune(self, targets):
Y
yuyang18 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1842 1843 1844 1845 1846 1847
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1848 1849
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1850
                    # and we need to find the current op that generate this
1851 1852 1853 1854 1855 1856 1857 1858
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1859
                    t = t.op
1860 1861 1862 1863
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1864
                else:
1865 1866
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1867 1868 1869 1870

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1871 1872 1873
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1874
        res._sync_with_cpp()
1875 1876
        return res

X
Xin Pan 已提交
1877
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1878
        """
F
fengjiayi 已提交
1879 1880 1881 1882 1883
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1884
        3. change the :code:`is_test`
Y
yuyang18 已提交
1885 1886 1887
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1888
        Args:
X
Xin Pan 已提交
1889 1890
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1891

Y
yuyang18 已提交
1892 1893 1894 1895 1896 1897
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1898
        res = Program()
1899
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1900 1901 1902 1903

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1904
        if prune_read_op:
1905 1906 1907 1908 1909 1910 1911 1912 1913
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1914
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1915 1916

        # change all `is_test` attributes to True
M
minqiyang 已提交
1917
        for i in six.moves.range(res.desc.num_blocks()):
1918
            block = res.desc.block(i)
M
minqiyang 已提交
1919
            for j in six.moves.range(block.op_size()):
1920 1921
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1922
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1923 1924 1925
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1926
        res._sync_with_cpp()
1927 1928
        return res

1929 1930
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1931 1932 1933 1934 1935 1936 1937
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1938
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1939 1940 1941 1942

        Returns:
            Program: A deserialized program desc.
        """
1943 1944
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1945
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1946
        p._sync_with_cpp()
1947
        return p
Y
Yu Yang 已提交
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    @staticmethod
    def construct_from_desc(desc):
        """
        Construct a program from program desc.

        Notes: All information about parameters will be lost.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
1968 1969
    @property
    def random_seed(self):
Y
yuyang18 已提交
1970 1971 1972 1973 1974 1975
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1976 1977
        return self._seed

Q
qiaolongfei 已提交
1978 1979
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1980 1981 1982
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1983 1984
        return self.desc.num_blocks()

D
dzhwinter 已提交
1985 1986 1987 1988 1989 1990
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1991
    def __repr__(self):
1992
        return self.__str__()
1993

Y
Yu Yang 已提交
1994
    def global_block(self):
Y
yuyang18 已提交
1995 1996 1997
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1998 1999
        return self.blocks[0]

Q
Qiao Longfei 已提交
2000
    def block(self, index):
Y
yuyang18 已提交
2001 2002 2003 2004 2005 2006 2007 2008
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2009 2010
        return self.blocks[index]

Y
Yu Yang 已提交
2011
    def current_block(self):
Y
yuyang18 已提交
2012 2013 2014 2015
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2016 2017
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2018
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2029
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2030 2031 2032
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2033 2034 2035 2036
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2037
    def _rollback(self):
Y
yuyang18 已提交
2038 2039 2040 2041 2042
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2043 2044
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2045
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2056 2057 2058
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2059
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2060

W
Wu Yi 已提交
2061
    def _copy_param_info_from(self, other):
2062
        """
2063
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2064

Y
yuyang18 已提交
2065 2066 2067
        Notes: This is a very low level API. Users should not invoke it
        directly.

2068 2069 2070 2071 2072 2073 2074
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2075
            raise TypeError("_copy_param_info_from should be invoked with "
2076 2077 2078
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2079
            raise ValueError("_copy_param_info_from should be invoked with two "
2080
                             "program, with represent the same topology")
W
Wu Yi 已提交
2081
        self.global_block()._copy_param_info_from(other.global_block())
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2102
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2103 2104
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2105

Y
yuyang18 已提交
2106 2107 2108
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2109 2110 2111 2112 2113 2114 2115
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2116
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2117 2118 2119
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2120
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2121
                             "program, with represent the same topology")
2122
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2123 2124 2125
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2126
    def list_vars(self):
Y
yuyang18 已提交
2127 2128 2129 2130 2131 2132
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2133
        for each_block in self.blocks:
2134
            for each_var in list(each_block.vars.values()):
2135 2136
                yield each_var

Y
Yu Yang 已提交
2137

Y
Yu Yang 已提交
2138
class Parameter(Variable):
2139
    """
2140
    Parameter is derived from Variable. A parameter is a persistable
2141
    Variable, and will be updated by optimizers after each iteration.
2142
    The training of a neural network is essentially the updating of
2143 2144
    its parameters.

2145
    Relative to a general Variable, a Parameter has several its own
2146 2147
    member variables:

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2160 2161
    """

Y
Yu Yang 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2172 2173 2174

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2175 2176 2177 2178
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2179 2180
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2181
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2182

W
wanghaoshuang 已提交
2183
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2184

F
fengjiayi 已提交
2185 2186 2187
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2188 2189 2190
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2191

F
update  
fengjiayi 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2206
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2207
            for attr_name in additional_attr:
2208 2209
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2210 2211
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2212 2213 2214 2215
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2216

Y
Yu Yang 已提交
2217
# program is a global instance.
Y
Yu Yang 已提交
2218 2219
_main_program_ = Program()
_startup_program_ = Program()
2220

2221

2222
def default_startup_program():
Y
Yu Yang 已提交
2223
    """
Y
yuyang18 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2233

Y
Yu Yang 已提交
2234 2235 2236
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2237
    return _startup_program_
2238

2239

2240
def default_main_program():
Y
Yu Yang 已提交
2241
    """
Y
yuyang18 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2251

Y
Yu Yang 已提交
2252 2253 2254
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2255
    return _main_program_
Y
Yu Yang 已提交
2256 2257 2258 2259 2260


def switch_main_program(program):
    """
    Switch the main program to a new program.
2261

Y
Yu Yang 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2276
    Switch the startup program to a new program
Y
Yu Yang 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2292 2293 2294
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2295

Y
Yu Yang 已提交
2296
    Examples:
Y
yuyang18 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2307

Y
Yu Yang 已提交
2308
    Examples:
Y
yuyang18 已提交
2309 2310 2311 2312 2313 2314

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2315

Y
Yu Yang 已提交
2316
    Args:
Y
yuyang18 已提交
2317
        main_program(Program): New main program inside `with` statement.
2318
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2332 2333


W
Wu Yi 已提交
2334
def _get_var(name, program=None):
X
xuwei06 已提交
2335
    """
Y
yuyang18 已提交
2336
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2337

X
xuwei06 已提交
2338 2339 2340
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2341
        If None, default_global_program() will be used.
X
xuwei06 已提交
2342 2343 2344 2345 2346 2347 2348

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2349
    assert isinstance(program, Program)
X
xuwei06 已提交
2350 2351

    return program.global_block().var(name)
2352 2353 2354 2355 2356 2357 2358 2359 2360


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace