cpu_quantize_pass.cc 45.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"

17
#include <sstream>
18 19
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

B
baoachun 已提交
21
#include "paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h"
22
#include "paddle/fluid/platform/mkldnn_helper.h"
23 24 25 26 27 28
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

29
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
30 31
using EigenVectorArrayMapFloat =
    Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
32 33
using string::PrettyLogDetail;

34 35 36 37 38 39 40 41 42
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

43
void MarkAndLogCannotQuantizeOp(Node* op, const char* details = nullptr) {
44 45 46
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
47
  if (details) msg_ss << " " << details;
48 49
  VLOG(2) << msg_ss.str().c_str();
  op->Op()->SetAttr("mkldnn_data_type", std::string("float32"));
50 51
}

52 53 54 55 56 57
void LogScaleIsMissingForVarName(const std::string& name) {
  VLOG(4) << "Quantization scale for the variable " << name << " is missing.";
}

void LogScaleIsMissingForVarNode(Node* node) {
  LogScaleIsMissingForVarName(node->Name());
58 59
}

60
void LogQuantizationDisabled(Node* op) {
61
  VLOG(2) << "Quantization skipped for operator " << op->Name()
62
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
63
          << "). Attribute mkldnn_data_type != \"int8\".";
64 65
}

66 67
void LogQuantizedOpsCounter(const std::string& type,
                            const int counter,
68 69 70 71 72 73 74
                            const char* details = nullptr) {
  std::stringstream msg_ss;
  msg_ss << "---    quantized " << counter << " " << type << " ops";
  if (details) msg_ss << " " << details;
  PrettyLogDetail(msg_ss.str().c_str());
}

75 76 77 78
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

79 80 81 82 83
void CPUQuantizePass::QuantizeInput(Graph* g,
                                    Node* op,
                                    Node* input,
                                    std::string input_name,
                                    double scale_to_one,
84
                                    bool is_input_unsigned,
85 86
                                    std::string scale_attr_name,
                                    float shift,
87
                                    std::string shift_attr_name) const {
M
Michał Gallus 已提交
88 89 90
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
91 92
  PADDLE_ENFORCE_EQ(name_found,
                    true,
93 94
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
95 96
                        input_name,
                        op->Op()->Type()));
97
  unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
98 99 100 101 102 103 104 105 106 107 108 109 110
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
111 112
  q_desc.SetAttr("Shift", shift);
  q_desc.SetAttr("is_negative_input", !is_input_unsigned);
113

Z
Zuza 已提交
114 115 116
  // fix to fc format error
  if (op->Op()->Type() == "fc" &&
      op->Op()->GetAttrIfExists<int>("in_num_col_dims") == 2) {
117 118 119
    q_desc.SetAttr(
        "output_format",
        Has("data_layout") ? Get<std::string>("data_layout") : "NCHW");
Z
Zuza 已提交
120
  } else {
121 122 123
    q_desc.SetAttr(
        "output_format",
        Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
Z
Zuza 已提交
124
  }
125 126 127 128 129 130 131 132 133 134 135 136 137
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
138
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
139 140
}

141 142 143
void CPUQuantizePass::QuantizeInputs(Graph* g,
                                     Node* op,
                                     std::string input_name,
144
                                     bool are_inputs_unsigned,
145 146
                                     std::string scale_attr_name,
                                     float shift,
147
                                     std::string shift_attr_name) const {
148
  auto inputs = op->inputs;
149
  auto output = op->outputs[0];
150 151
  PADDLE_ENFORCE_GE(inputs.size(),
                    1,
152 153
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
154 155 156 157
                        op->Name(),
                        inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(),
                    1,
158
                    platform::errors::InvalidArgument(
159 160
                        "OP(%s)'s outputs(%d) must be equal to 1.",
                        op->Name(),
161
                        op->outputs.size()));
162 163 164 165 166 167 168 169

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

170
  double scale_out = GetScaleValueForNode(output);
171
  unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
172
  float scale = scale_out * max;
173 174 175 176 177 178 179 180

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
181
    q_desc.SetAttr("Shift", shift);
182 183 184
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
185
    q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
186 187 188 189 190 191 192 193 194 195 196 197 198
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
199
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
200 201
}

202 203 204
void CPUQuantizePass::DequantizeOutput(Graph* g,
                                       Node* op,
                                       Node* output,
205
                                       std::string output_name,
206 207
                                       double scale_to_one,
                                       bool is_unsigned,
208
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
209 210 211
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
212 213
  PADDLE_ENFORCE_EQ(name_found,
                    true,
M
Michał Gallus 已提交
214
                    platform::errors::InvalidArgument(
215
                        "Var(%s) isn't the output of the %s operator.",
216 217
                        output_name,
                        op->Op()->Type()));
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

247 248 249
bool CPUQuantizePass::AreScalesPresentForVarNames(
    std::vector<std::string> names) const {
  bool present = true;
B
baoachun 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto name : names) {
      if (scales.find(name) == scales.end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
    }
  } else {
    for (auto name : names) {
      if (var_quant_scales_->find(name) == var_quant_scales_->end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
264 265 266 267 268
    }
  }
  return present;
}

269
bool CPUQuantizePass::AreScalesPresentForNodes(
270
    std::initializer_list<Node*> nodes) const {
271
  bool present = true;
B
baoachun 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto node : nodes) {
      if (scales.count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
    }
  } else {
    for (auto node : nodes) {
      if (var_quant_scales_->count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
286 287 288 289 290
    }
  }
  return present;
}

291 292
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataByName(
    const std::string& name) const {
B
baoachun 已提交
293 294 295 296 297
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    return scales.at(name);
  }
  return var_quant_scales_->at(name);
298 299
}

300 301
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
302 303 304 305 306
  return GetScaleDataByName(node->Name());
}

LoDTensor CPUQuantizePass::GetScaleTensorByName(const std::string& name) const {
  return GetScaleDataByName(name).second;
307 308 309 310 311 312 313 314 315 316 317 318 319
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

320 321
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
322
         platform::HasOpINT8DataType(node->Op());
323 324 325
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
326 327 328 329 330 331
  // return true only if all of outputs are ops and their are either quantize or
  // have int8 data type
  return all_of(node->outputs.begin(), node->outputs.end(), [](Node* output) {
    return (output->IsOp() && (output->Op()->Type() == "quantize" ||
                               platform::HasOpINT8DataType(output->Op())));
  });
332 333
}

B
baoachun 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
void CPUQuantizePass::GetQuantInfo(Graph* graph) const {
  std::unordered_map<std::string, std::vector<float>> info_map{};
  GetInfoFromTheFirstOp(graph, "has_quant_info", "var_quant_scales", &info_map);

  for (auto iter = info_map.begin(); iter != info_map.end(); iter++) {
    LoDTensor tensor;
    const int size = static_cast<int>(iter->second.size());
    auto* data = tensor.mutable_data<double>({size}, platform::CPUPlace());
    for (int i = 0; i < size; i++) {
      data[i] = static_cast<double>(iter->second[i]);
    }

    auto pair = std::make_pair(false, tensor);
    var_quant_scales_->insert(std::make_pair(iter->first, pair));
  }
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
365
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
366 367 368
      LogQuantizationDisabled(conv_op);
      return;
    }
369 370 371 372 373

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

374
    auto has_output_scale = AreScalesPresentForNodes({conv_output});
W
Wojciech Uss 已提交
375
    if (with_residual_data && !has_output_scale) {
376 377 378 379
      MarkAndLogCannotQuantizeOp(
          conv_op,
          "Conv op with ResidualData input cannot be quantized "
          "without output scale.");
W
Wojciech Uss 已提交
380 381 382
      return;
    }

383
    if (with_residual_data) {
384 385
      GET_IR_NODE_FROM_SUBGRAPH(
          conv_residual_data, conv_residual_data, conv_pattern);
386
      if (!AreScalesPresentForNodes(
387
              {conv_input, conv_filter, conv_residual_data})) {
388 389
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
390
        return;
391
      }
392 393 394 395 396

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

397 398 399 400 401 402 403
      QuantizeInput(g,
                    conv_op,
                    conv_residual_data,
                    "ResidualData",
                    residual_scale,
                    is_residual_unsigned,
                    "Scale_in_eltwise");
404
    } else {
405
      if (!AreScalesPresentForNodes({conv_input, conv_filter})) {
406 407
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
408
        return;
409
      }
410 411
    }

412 413
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
414 415 416 417 418 419 420
    QuantizeInput(g,
                  conv_op,
                  conv_input,
                  "Input",
                  input_scale,
                  is_input_unsigned,
                  "Scale_in");
421

422
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
423
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
424
                                     filter_scale_tensor.numel()};
425 426 427 428 429 430 431
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

432
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
433
    if (has_output_scale) {
434 435 436
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
437 438 439 440 441 442 443
      DequantizeOutput(g,
                       conv_op,
                       conv_output,
                       "Output",
                       output_scale,
                       is_output_unsigned,
                       "Scale_out");
444 445 446
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
447

448
    // change threshold in bounded ReLu
449 450
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
451 452 453 454
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
455
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
456 457
    }

458 459 460 461 462 463
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

464
  LogQuantizedOpsCounter(
465 466
      "conv2d",
      quantize_conv_count,
467
      ((with_residual_data) ? "with residual connection" : ""));
468 469
}

M
Michał Gallus 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
487
    if (!platform::HasOpINT8DataType(fc->Op())) {
488 489 490
      LogQuantizationDisabled(fc);
      return;
    }
491
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
492
      MarkAndLogCannotQuantizeOp(fc, "use_mkldnn attribute set to false");
M
Michał Gallus 已提交
493
      return;
494
    }
M
Michał Gallus 已提交
495 496 497 498 499

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

500
    if (!AreScalesPresentForNodes({input, weights})) {
501
      MarkAndLogCannotQuantizeOp(fc, "No scale available for the operator");
502 503
      return;
    }
504

505 506
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
507 508
    QuantizeInput(
        g, fc, input, "Input", input_scale, is_input_unsigned, "Scale_in");
M
Michał Gallus 已提交
509

510
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
511
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
512
                                     weight_scale_tensor.numel()};
M
Michał Gallus 已提交
513 514 515 516 517 518 519
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

520
    // if quantization scale is missing for output tensor, return fp32 data
521
    if (AreScalesPresentForNodes({output})) {
522 523
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
524 525
      DequantizeOutput(
          g, fc, output, "Out", output_scale, is_output_unsigned, "Scale_out");
526 527 528
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
529 530 531 532 533 534

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);
535
  LogQuantizedOpsCounter("fc", quantize_fc_count);
M
Michał Gallus 已提交
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549 550
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
551
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
552 553 554
      LogQuantizationDisabled(pool_op);
      return;
    }
555 556 557 558

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

559
    if (!AreScalesPresentForNodes({pool_input, pool_output})) {
560 561
      MarkAndLogCannotQuantizeOp(pool_op,
                                 "No scale available for the operator");
562 563
      return;
    }
564

565 566
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
567 568
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

569 570
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
571 572
    DequantizeOutput(
        g, pool_op, pool_output, "Out", output_scale, is_output_unsigned);
573 574 575 576 577 578

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);
579
  LogQuantizedOpsCounter("pool2d", quantize_pool_count);
580 581
}

582 583 584 585 586 587 588 589 590 591 592 593 594
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
595
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
596 597 598
      LogQuantizationDisabled(concat_op);
      return;
    }
599 600 601

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

602
    if (!AreScalesPresentForNodes({concat_out})) {
603 604
      MarkAndLogCannotQuantizeOp(concat_op,
                                 "No scale available for the operator");
605 606
      return;
    }
607

608 609
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
610 611 612
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
613

614
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
615

616 617
    DequantizeOutput(
        g, concat_op, concat_out, "Out", output_scale, are_all_inputs_unsigned);
618 619 620 621 622 623

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);
624
  LogQuantizedOpsCounter("concat", quantize_concat_count);
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
640
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
641 642 643
      LogQuantizationDisabled(prior_box_op);
      return;
    }
644

645 646
    GET_IR_NODE_FROM_SUBGRAPH(
        prior_box_input, prior_box_input, prior_box_pattern);
647

648
    if (!AreScalesPresentForNodes({prior_box_input})) {
649 650
      MarkAndLogCannotQuantizeOp(prior_box_op,
                                 "No scale available for the operator");
651 652
      return;
    }
653

654 655 656
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
657 658 659 660 661
    QuantizeInput(g,
                  prior_box_op,
                  prior_box_input,
                  "Input",
                  input_scale,
662 663 664 665 666 667 668
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);
669
  LogQuantizedOpsCounter("prior_box", quantize_prior_box_count);
670 671
}

672 673 674 675 676 677 678 679 680 681 682 683 684
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);

    // skip if should not be quantized
685
    if (!platform::HasOpINT8DataType(transpose_op->Op())) {
686
      LogQuantizationDisabled(transpose_op);
687 688 689
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
690 691
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);
692

693
    // skip if prev op and next op is not quantized
694
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(transpose_out))) {
695 696
      MarkAndLogCannotQuantizeOp(transpose_op,
                                 "No other quantizable operators nearby");
697 698 699
      return;
    }

700
    if (!AreScalesPresentForNodes({transpose_in, transpose_out})) {
701 702
      MarkAndLogCannotQuantizeOp(transpose_op,
                                 "No scale available for the operator");
703
      return;
704
    }
705

706 707
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
708 709
    QuantizeInput(
        g, transpose_op, transpose_in, "X", input_scale, is_input_unsigned);
710

711 712 713
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
714 715 716 717 718
    DequantizeOutput(g,
                     transpose_op,
                     transpose_out,
                     "Out",
                     output_scale,
719 720 721 722 723 724 725
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);
726
  LogQuantizedOpsCounter("transpose2", quantize_transpose_count);
727 728
}

729 730 731 732 733 734 735 736 737 738 739 740 741
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);

    // skip if should not be quantized
742
    if (!platform::HasOpINT8DataType(reshape_op->Op())) {
743
      LogQuantizationDisabled(reshape_op);
744 745 746
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
747 748
    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);
749

750 751
    // skip if prev op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(reshape_out))) {
752 753
      MarkAndLogCannotQuantizeOp(reshape_op,
                                 "No other quantizable operators nearby");
754 755 756
      return;
    }

757
    if (!AreScalesPresentForNodes({reshape_in, reshape_out})) {
758 759
      MarkAndLogCannotQuantizeOp(reshape_op,
                                 "No scale available for the operator");
760
      return;
761
    }
762

763 764
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
765 766
    QuantizeInput(
        g, reshape_op, reshape_in, "X", input_scale, is_input_unsigned);
767

768 769
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
770 771
    DequantizeOutput(
        g, reshape_op, reshape_out, "Out", output_scale, is_output_unsigned);
772 773 774 775 776 777

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);
778
  LogQuantizedOpsCounter("reshape2", quantize_reshape_count);
779 780
}

Z
Zuza 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
void CPUQuantizePass::QuantizeSlice(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Slice slice_pattern{pattern, name_scope_};
  slice_pattern();

  int quantize_slice_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize slice op";
    GET_IR_NODE_FROM_SUBGRAPH(slice_op, slice_op, slice_pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(slice_op->Op())) {
      LogQuantizationDisabled(slice_op);
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, slice_pattern);
799 800
    GET_IR_NODE_FROM_SUBGRAPH(slice_in, slice_in, slice_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(slice_out, slice_out, slice_pattern);
Z
Zuza 已提交
801 802

    // skip if prev op and next op is not quantized
803
    if (!IsOpDequantized(prev_op) && !IsOpQuantized(slice_out)) {
804 805
      MarkAndLogCannotQuantizeOp(slice_op,
                                 "No other quantizable operators nearby");
Z
Zuza 已提交
806 807 808 809
      return;
    }

    if (!AreScalesPresentForNodes({slice_out})) {
810 811
      MarkAndLogCannotQuantizeOp(slice_op,
                                 "No scale available for the operator");
Z
Zuza 已提交
812 813 814 815 816
      return;
    }

    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(slice_out, &is_input_unsigned);
817 818
    QuantizeInput(
        g, slice_op, slice_in, "Input", input_scale, is_input_unsigned);
Z
Zuza 已提交
819 820 821

    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(slice_out, &is_output_unsigned);
822 823
    DequantizeOutput(
        g, slice_op, slice_out, "Out", output_scale, is_output_unsigned);
Z
Zuza 已提交
824 825 826 827 828 829

    ++quantize_slice_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_slice_count);
830
  LogQuantizedOpsCounter("slice", quantize_slice_count);
Z
Zuza 已提交
831 832
}

833 834 835
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
836
  patterns::MatmulWithInputOps matmul_pattern{pattern, name_scope_};
837 838 839 840 841 842 843 844 845
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
846
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
847
      LogQuantizationDisabled(matmul_op);
848 849 850 851 852 853 854
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
855 856
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No other quantizable operators nearby");
857 858 859 860 861 862
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

863
    if (!AreScalesPresentForNodes({matmul_in_x, matmul_in_y})) {
864 865
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No scale available for the operator");
866
      return;
867
    }
868

869 870 871
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
872 873
    PADDLE_ENFORCE_EQ(is_x_unsigned,
                      is_y_unsigned,
874 875 876 877
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
878 879 880 881 882 883 884 885
                          is_x_unsigned,
                          is_y_unsigned));
    QuantizeInput(g,
                  matmul_op,
                  matmul_in_x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
886
                  "Scale_x");
887 888 889 890 891 892
    QuantizeInput(g,
                  matmul_op,
                  matmul_in_y,
                  "Y",
                  input_y_scale,
                  is_y_unsigned,
893 894
                  "Scale_y");

895
    // if quantization scale is missing for output tensor, return fp32 data
896
    if (AreScalesPresentForNodes({matmul_out})) {
897 898
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
899 900 901 902 903 904 905
      DequantizeOutput(g,
                       matmul_op,
                       matmul_out,
                       "Out",
                       output_scale,
                       is_output_unsigned,
                       "Scale_out");
906 907 908
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
909 910 911 912 913

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);
914
  LogQuantizedOpsCounter("matmul", quantize_matmul_count);
915 916
}

Z
Zuza 已提交
917 918
void CPUQuantizePass::QuantizeElementwise(
    Graph* graph, const std::string elementwise_type) const {
919 920
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
921
  patterns::ElementwiseOp elementwise_pattern{pattern, name_scope_};
922

923
  elementwise_pattern(elementwise_type);
924

Z
Zuza 已提交
925
  int quantize_elementwise_count = 0;
926 927
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Z
Zuza 已提交
928
    VLOG(4) << "Quantize " + elementwise_type + " op";
929 930
    GET_IR_NODE_FROM_SUBGRAPH(
        elementwise_op, elementwise_op, elementwise_pattern);
931 932

    // skip if should not be quantized
Z
Zuza 已提交
933 934
    if (!platform::HasOpINT8DataType(elementwise_op->Op())) {
      LogQuantizationDisabled(elementwise_op);
935 936 937
      return;
    }

938 939 940 941 942 943 944 945 946 947 948 949
    auto x_name = elementwise_op->Op()->Input("X");
    auto y_name = elementwise_op->Op()->Input("Y");
    Node *elementwise_x, *elementwise_y;

    for (auto& input : elementwise_op->inputs) {
      if (input->Name() == x_name[0]) elementwise_x = input;
      if (input->Name() == y_name[0]) elementwise_y = input;
    }
    if (!elementwise_x || !elementwise_y) {
      return;
    }

950 951
    GET_IR_NODE_FROM_SUBGRAPH(
        elementwise_out, elementwise_out, elementwise_pattern);
952

953
    if (!AreScalesPresentForNodes(
Z
Zuza 已提交
954
            {elementwise_x, elementwise_y, elementwise_out})) {
955 956
      MarkAndLogCannotQuantizeOp(elementwise_op,
                                 "No scale available for the operator");
957 958 959 960
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
Z
Zuza 已提交
961 962
    auto input_x_scale = GetScaleValueForNode(elementwise_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(elementwise_y, &is_y_unsigned);
963 964 965

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
966 967
      MarkAndLogCannotQuantizeOp(
          elementwise_op, "Elementwise inputs must be of the same type.");
968 969 970
      return;
    }

971 972 973 974 975 976 977 978 979 980 981 982 983 984
    QuantizeInput(g,
                  elementwise_op,
                  elementwise_x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g,
                  elementwise_op,
                  elementwise_y,
                  "Y",
                  input_y_scale,
                  is_y_unsigned,
                  "Scale_y");
985

986 987
    bool is_output_unsigned{false};
    auto output_scale =
Z
Zuza 已提交
988
        GetScaleValueForNode(elementwise_out, &is_output_unsigned);
989

990 991 992 993 994 995 996
    DequantizeOutput(g,
                     elementwise_op,
                     elementwise_out,
                     "Out",
                     output_scale,
                     is_output_unsigned,
                     "Scale_out");
997

Z
Zuza 已提交
998
    ++quantize_elementwise_count;
999 1000
  };
  gpd(graph, handler);
Z
Zuza 已提交
1001
  AddStatis(quantize_elementwise_count);
1002
  LogQuantizedOpsCounter(elementwise_type, quantize_elementwise_count);
1003 1004
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);

1027
    if (!AreScalesPresentForNodes({x, weight_x})) {
1028
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1029 1030 1031 1032 1033 1034 1035 1036 1037
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1038 1039 1040 1041 1042 1043 1044 1045 1046
    QuantizeInput(g,
                  op,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1047 1048 1049

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
1050
                                     weight_scale_tensor.numel()};
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1064
  LogQuantizedOpsCounter("fusion_gru", quantize_count);
1065 1066
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
void CPUQuantizePass::QuantizeMultiGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::MultiGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize multi_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(gru->Op())) {
      LogQuantizationDisabled(gru);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(wx, wx, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(h, h, pattern);

    auto wx_names = gru->Op()->Input("WeightX");
    if (!AreScalesPresentForNodes({x}) ||
        !AreScalesPresentForVarNames(wx_names)) {
1091
      MarkAndLogCannotQuantizeOp(gru, "No scale available for the operator");
1092 1093 1094 1095 1096 1097 1098 1099 1100
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1101 1102 1103 1104 1105 1106 1107 1108 1109
    QuantizeInput(g,
                  gru,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

    auto* scope = param_scope();
    int wx_size = wx_names.size();
    std::vector<std::string> w_scale_var_names;
    for (int i = 0; i < wx_size; ++i) {
      auto scale_tensor_src = GetScaleTensorByName(wx_names[i]);
      EigenVectorArrayMap eigen_tensor_src{scale_tensor_src.data<double>(),
                                           scale_tensor_src.numel()};

      VarDesc scale_var_desc(patterns::PDNodeName("multi_gru", "w_scale"));

1121
      scale_var_desc.SetShape(phi::vectorize(scale_tensor_src.dims()));
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
      scale_var_desc.SetDataType(proto::VarType::FP32);
      scale_var_desc.SetLoDLevel(scale_tensor_src.lod().size());
      scale_var_desc.SetPersistable(true);
      auto* w_scale_node = g->CreateVarNode(&scale_var_desc);

      auto* w_scale_tensor_dst =
          scope->Var(w_scale_node->Name())->GetMutable<LoDTensor>();
      w_scale_tensor_dst->Resize(scale_tensor_src.dims());
      auto* dst_data =
          w_scale_tensor_dst->mutable_data<float>(platform::CPUPlace());
      EigenVectorArrayMapFloat eigen_tensor_dst{dst_data,
                                                w_scale_tensor_dst->numel()};
      eigen_tensor_dst =
          eigen_tensor_src.cast<float>() * static_cast<float>(S8_MAX);
      w_scale_var_names.push_back(w_scale_node->Name());
      IR_NODE_LINK_TO(w_scale_node, gru);
    }

    gru->Op()->SetInput("Scale_weights", w_scale_var_names);
    // return fp32 data
    gru->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1148
  LogQuantizedOpsCounter("multi_gru", quantize_count);
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
void CPUQuantizePass::QuantizeFusionLSTM(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionLSTM pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_lstm op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(hidden, hidden, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(cell, cell, pattern);

    // Starting from here there maybe issues
    if (!AreScalesPresentForNodes({x, weight_x})) {
1176
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1177 1178 1179 1180 1181 1182 1183 1184 1185
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1186 1187 1188 1189 1190 1191 1192 1193 1194
    QuantizeInput(g,
                  op,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel()};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1212
  LogQuantizedOpsCounter("fusion_lstm", quantize_count);
1213 1214
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
void CPUQuantizePass::QuantizeNearestInterp(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::NearestInterp nearest_interp_pattern{pattern, name_scope_};
  nearest_interp_pattern();

  int quantize_nearest_interp_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize nearest_interp op";
1225 1226
    GET_IR_NODE_FROM_SUBGRAPH(
        nearest_interp_op, nearest_interp_op, nearest_interp_pattern);
1227 1228 1229 1230 1231 1232 1233

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(nearest_interp_op->Op())) {
      LogQuantizationDisabled(nearest_interp_op);
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, nearest_interp_pattern);
1234 1235 1236 1237
    GET_IR_NODE_FROM_SUBGRAPH(
        nearest_interp_in, nearest_interp_in, nearest_interp_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(
        nearest_interp_out, nearest_interp_out, nearest_interp_pattern);
1238 1239

    // skip if prev op and next op is not quantized
1240
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(nearest_interp_out))) {
1241 1242
      MarkAndLogCannotQuantizeOp(nearest_interp_op,
                                 "No other quantizable operators nearby");
1243 1244 1245 1246
      return;
    }

    if (!AreScalesPresentForNodes({nearest_interp_in, nearest_interp_out})) {
1247 1248
      MarkAndLogCannotQuantizeOp(nearest_interp_op,
                                 "No scale available for the operator");
1249 1250 1251 1252 1253 1254
      return;
    }

    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(nearest_interp_in, &is_input_unsigned);
1255 1256 1257 1258 1259
    QuantizeInput(g,
                  nearest_interp_op,
                  nearest_interp_in,
                  "X",
                  input_scale,
1260 1261 1262 1263 1264
                  is_input_unsigned);

    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(nearest_interp_out, &is_output_unsigned);
1265 1266 1267 1268 1269 1270
    DequantizeOutput(g,
                     nearest_interp_op,
                     nearest_interp_out,
                     "Out",
                     output_scale,
                     is_output_unsigned);
1271 1272 1273 1274 1275 1276

    ++quantize_nearest_interp_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_nearest_interp_count);
1277
  LogQuantizedOpsCounter("nearest_interp", quantize_nearest_interp_count);
1278 1279
}

1280
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
1281
  VLOG(3) << "Quantizing the graph.";
1282 1283
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
1284
  FusePassBase::Init(name_scope_, graph);
1285

1286 1287 1288
  PADDLE_ENFORCE_NOT_NULL(
      param_scope(),
      platform::errors::InvalidArgument("Scope cannot be nullptr."));
1289

B
baoachun 已提交
1290
  GetQuantInfo(graph);
1291 1292 1293
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
1294
  QuantizeConcat(graph);
1295
  QuantizePriorBox(graph);
1296
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
1297
  QuantizeFc(graph);
1298
  QuantizeReshape(graph);
1299
  QuantizeMatmul(graph);
Z
Zuza 已提交
1300 1301
  QuantizeElementwise(graph, "elementwise_add");
  QuantizeElementwise(graph, "elementwise_mul");
1302
  QuantizeElementwise(graph, "elementwise_sub");
1303
  QuantizeFusionGru(graph);
1304
  QuantizeMultiGru(graph);
1305
  QuantizeFusionLSTM(graph);
Z
Zuza 已提交
1306
  QuantizeSlice(graph);
1307
  QuantizeNearestInterp(graph);
1308 1309 1310 1311 1312 1313 1314 1315
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");