cpu_quantize_pass.cc 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
16
#include <limits>
17
#include <sstream>
18 19 20
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
M
Michał Gallus 已提交
21
#include "paddle/fluid/platform/errors.h"
22 23 24 25 26 27
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

28 29 30
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;

31 32 33 34 35 36 37 38 39
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

40
void LogCannotQuantizeOp(Node* op, const char* details = nullptr) {
41 42 43
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
44
  if (details) msg_ss << " " << details;
45 46 47 48
  PrettyLogDetail(msg_ss.str().c_str());
}

void LogScaleIsMissingForVar(Node* var) {
W
Wojciech Uss 已提交
49 50
  VLOG(4) << "Quantization scale for the variable " << var->Name()
          << " is missing.";
51 52
}

53 54 55 56 57 58 59
void LogQuantizationDisabled(Node* op) {
  std::stringstream msg_ss;
  VLOG(4) << "Qantization skipped for operator " << op->Name()
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
          << "). Attribute use_quantizer = false.";
}

60 61 62 63 64 65 66 67
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
                                    bool is_unsigned,
                                    std::string scale_attr_name) const {
M
Michał Gallus 已提交
68 69 70 71 72 73 74
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
  PADDLE_ENFORCE_EQ(
      name_found, true,
      platform::errors::InvalidArgument("%s isn't the input of the %s operator",
                                        input_name, op->Op()->Type()));
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
  q_desc.SetAttr("is_negative_input", !is_unsigned);
90 91 92

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

108
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
109
                                     bool are_unsigned,
110 111
                                     std::string scale_attr_name) const {
  auto inputs = op->inputs;
112
  auto output = op->outputs[0];
113
  PADDLE_ENFORCE_GE(inputs.size(), 1);
114
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1);
115 116 117 118 119 120 121 122

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

123
  double scale_out = GetScaleValueForNode(output);
124
  unsigned max = are_unsigned ? U8_MAX : S8_MAX;
125
  float scale = scale_out * max;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("is_negative_input", !are_unsigned);
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

153 154 155 156
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
157 158 159 160 161 162 163
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "%s isn't the output of the %s operator", output_name,
                        op->Op()->Type()));
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

193 194 195 196 197 198 199
bool CPUQuantizePass::AreScalesPresentForNodes(
    const Node* op_node, std::initializer_list<Node*> nodes) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
200
      LogScaleIsMissingForVar(node);
201 202 203 204 205
    }
  }
  return present;
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales[node->Name()];
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

223 224 225 226 227 228 229 230 231 232
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
    auto* conv_op_desc = conv_op->Op();

    // skip if should not be quantized
248 249 250 251
    if (!conv_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(conv_op);
      return;
    }
252 253 254 255 256

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

W
Wojciech Uss 已提交
257 258 259 260 261 262 263 264
    auto has_output_scale = AreScalesPresentForNodes(conv_op, {conv_output});
    if (with_residual_data && !has_output_scale) {
      LogCannotQuantizeOp(conv_op,
                          "Conv op with ResidualData input cannot be quantized "
                          "without output scale.");
      return;
    }

265 266 267
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
268 269 270
      if (!AreScalesPresentForNodes(
              conv_op, {conv_input, conv_filter, conv_residual_data})) {
        LogCannotQuantizeOp(conv_op);
271
        return;
272
      }
273 274 275 276 277 278 279 280

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
281 282
      if (!AreScalesPresentForNodes(conv_op, {conv_input, conv_filter})) {
        LogCannotQuantizeOp(conv_op);
283
        return;
284
      }
285 286
    }

287 288
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
289 290 291
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

292
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
293 294 295 296 297 298 299 300 301
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
                                     filter_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

302
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
303
    if (has_output_scale) {
304 305 306 307 308 309 310 311
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
      DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
312

313
    // change threshold in bounded ReLu
314 315
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
316 317 318 319
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
320
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
321 322
    }

323 324 325 326 327 328 329 330 331 332 333 334
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);
    auto* fc_op_desc = fc->Op();

    // skip if should not be quantized
353 354 355 356 357
    if (!fc_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(fc);
      return;
    }
    if (!fc_op_desc->GetAttrIfExists<bool>("use_mkldnn")) {
M
Michał Gallus 已提交
358
      return;
359
    }
M
Michał Gallus 已提交
360 361 362 363 364

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

365 366 367 368
    if (!AreScalesPresentForNodes(fc, {input, weights})) {
      LogCannotQuantizeOp(fc);
      return;
    }
369

370 371
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
372 373 374
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

375
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
376 377 378 379 380 381 382 383 384
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

385 386 387 388 389 390 391 392 393
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(fc, {output})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
      DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                       "Scale_out");
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
394 395 396 397 398 399 400 401 402 403 404 405

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);
    auto* pool_op_desc = pool_op->Op();

    // skip if should not be quantized
420 421 422 423
    if (!pool_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(pool_op);
      return;
    }
424 425 426 427

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

428 429 430 431
    if (!AreScalesPresentForNodes(pool_op, {pool_input, pool_output})) {
      LogCannotQuantizeOp(pool_op);
      return;
    }
432

433 434
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
435 436
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

437 438
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
439 440 441 442 443 444 445 446 447 448 449 450
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);
    auto* concat_op_desc = concat_op->Op();

    // skip if should not be quantized
465 466 467 468
    if (!concat_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(concat_op);
      return;
    }
469 470 471

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

472 473 474 475
    if (!AreScalesPresentForNodes(concat_op, {concat_out})) {
      LogCannotQuantizeOp(concat_op);
      return;
    }
476

477 478
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
479 480 481
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
482

483
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
484 485 486 487 488 489 490 491 492 493 494 495 496

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);
    auto* prior_box_op_desc = prior_box_op->Op();

    // skip if should not be quantized
511 512 513 514
    if (!prior_box_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(prior_box_op);
      return;
    }
515 516 517 518

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

519 520 521 522
    if (!AreScalesPresentForNodes(prior_box_op, {prior_box_input})) {
      LogCannotQuantizeOp(prior_box_op);
      return;
    }
523

524 525 526
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
527 528 529 530 531 532 533 534 535 536 537 538 539
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);
    auto* transpose_op_desc = transpose_op->Op();

    // skip if should not be quantized
    if (!transpose_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
555
      LogQuantizationDisabled(transpose_op);
556 557 558 559 560
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

561 562
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
563 564 565 566 567
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

568 569 570
    if (!AreScalesPresentForNodes(transpose_op,
                                  {transpose_in, transpose_out})) {
      LogCannotQuantizeOp(transpose_op);
571
      return;
572
    }
573

574 575
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
576 577 578
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

579 580 581
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
582 583 584 585 586 587 588 589 590 591 592 593 594
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);
    auto* reshape_op_desc = reshape_op->Op();

    // skip if should not be quantized
    if (!reshape_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
610
      LogQuantizationDisabled(reshape_op);
611 612 613 614 615
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

616 617
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
618 619 620 621 622 623
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

624 625
    if (!AreScalesPresentForNodes(reshape_op, {reshape_in, reshape_out})) {
      LogCannotQuantizeOp(reshape_op);
626
      return;
627
    }
628

629 630
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
631 632 633
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

634 635
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
636 637 638 639 640 641 642 643 644 645 646 647
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Matmul matmul_pattern{pattern, name_scope_};
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);
    auto* matmul_op_desc = matmul_op->Op();

    // skip if should not be quantized
    if (!matmul_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
663
      LogQuantizationDisabled(matmul_op);
664 665 666 667 668 669 670 671 672 673 674 675 676
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

677 678
    if (!AreScalesPresentForNodes(matmul_op, {matmul_in_x, matmul_in_y})) {
      LogCannotQuantizeOp(matmul_op);
679
      return;
680
    }
681

682 683 684 685 686 687 688 689 690 691 692 693
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
    PADDLE_ENFORCE_EQ(
        is_x_unsigned, is_y_unsigned,
        platform::errors::InvalidArgument(
            "Matmul inputs should have the same value of is_unsigned"));
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

694 695 696 697 698 699 700 701 702
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(matmul_op, {matmul_out})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
      DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
703 704 705 706 707 708 709 710 711

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};

  elementwise_add_pattern(
      pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
      pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));

  int quantize_elementwise_add_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize elementwise_add op";
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
                              elementwise_add_pattern);
    auto* elementwise_add_op_desc = elementwise_add_op->Op();

    // skip if should not be quantized
    if (!elementwise_add_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(elementwise_add_op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
                              elementwise_add_pattern);

    if (!AreScalesPresentForNodes(elementwise_add_op,
                                  {elementwise_add_x, elementwise_add_y})) {
      LogCannotQuantizeOp(elementwise_add_op);
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale =
        GetScaleValueForNode(elementwise_add_x, &is_x_unsigned);
    auto input_y_scale =
        GetScaleValueForNode(elementwise_add_y, &is_y_unsigned);

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
      LogCannotQuantizeOp(elementwise_add_op,
                          "ElementwiseAdd inputs must be of the same type.");
      return;
    }

    QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale,
                  is_x_unsigned, "Scale_x");
    QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale,
                  is_y_unsigned, "Scale_y");

    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(elementwise_add_op, {elementwise_add_out})) {
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(elementwise_add_out, &is_output_unsigned);
      DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out",
                       output_scale, is_output_unsigned, "Scale_out");
    } else {
      elementwise_add_op->Op()->SetAttr("force_fp32_output", true);
    }

    ++quantize_elementwise_add_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_elementwise_add_count);

  PrettyLogDetail("---    quantized %d elementwise_add ops",
                  quantize_elementwise_add_count);
}

786
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
787
  VLOG(3) << "Quantizing the graph.";
788 789
  PADDLE_ENFORCE(graph);
  FusePassBase::Init(name_scope_, graph);
790 791 792

  PADDLE_ENFORCE(param_scope());

793 794 795
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
796
  QuantizeConcat(graph);
797
  QuantizePriorBox(graph);
798
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
799
  QuantizeFc(graph);
800
  QuantizeReshape(graph);
801
  QuantizeMatmul(graph);
802
  QuantizeElementwiseAdd(graph);
803 804 805 806 807 808 809 810
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");