“c8c8c01a235f4e370073f5946b08122b9bb92c97”上不存在“git@gitcode.net:s920243400/PaddleDetection.git”
cpu_quantize_pass.cc 43.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17
#include <utility>
#include <vector>
W
wanghuancoder 已提交
18

B
baoachun 已提交
19 20
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h"
21
#include "paddle/fluid/platform/mkldnn_helper.h"
22 23 24 25 26 27
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

28
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
29 30
using EigenVectorArrayMapFloat =
    Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
31 32
using string::PrettyLogDetail;

33 34 35 36 37 38 39 40 41
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

42
void MarkAndLogCannotQuantizeOp(Node* op, const char* details = nullptr) {
43 44 45
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
46
  if (details) msg_ss << " " << details;
47 48
  VLOG(2) << msg_ss.str().c_str();
  op->Op()->SetAttr("mkldnn_data_type", std::string("float32"));
49 50
}

51 52 53 54 55 56
void LogScaleIsMissingForVarName(const std::string& name) {
  VLOG(4) << "Quantization scale for the variable " << name << " is missing.";
}

void LogScaleIsMissingForVarNode(Node* node) {
  LogScaleIsMissingForVarName(node->Name());
57 58
}

59
void LogQuantizationDisabled(Node* op) {
60
  VLOG(2) << "Quantization skipped for operator " << op->Name()
61
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
62
          << "). Attribute mkldnn_data_type != \"int8\".";
63 64
}

65 66 67 68 69 70 71 72
void LogQuantizedOpsCounter(const std::string& type, const int counter,
                            const char* details = nullptr) {
  std::stringstream msg_ss;
  msg_ss << "---    quantized " << counter << " " << type << " ops";
  if (details) msg_ss << " " << details;
  PrettyLogDetail(msg_ss.str().c_str());
}

73 74 75 76 77 78
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
79 80 81
                                    bool is_input_unsigned,
                                    std::string scale_attr_name, float shift,
                                    std::string shift_attr_name) const {
M
Michał Gallus 已提交
82 83 84
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
85 86 87 88
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
                        input_name, op->Op()->Type()));
89
  unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
90 91 92 93 94 95 96 97 98 99 100 101 102
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
103 104
  q_desc.SetAttr("Shift", shift);
  q_desc.SetAttr("is_negative_input", !is_input_unsigned);
105

Z
Zuza 已提交
106 107 108 109 110 111 112 113 114 115 116
  // fix to fc format error
  if (op->Op()->Type() == "fc" &&
      op->Op()->GetAttrIfExists<int>("in_num_col_dims") == 2) {
    q_desc.SetAttr("output_format", Has("data_layout")
                                        ? Get<std::string>("data_layout")
                                        : "NCHW");
  } else {
    q_desc.SetAttr("output_format", Has("data_layout")
                                        ? Get<std::string>("data_layout")
                                        : "NHWC");
  }
117 118 119 120 121 122 123 124 125 126 127 128 129
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
130
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
131 132
}

133
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
134 135 136
                                     bool are_inputs_unsigned,
                                     std::string scale_attr_name, float shift,
                                     std::string shift_attr_name) const {
137
  auto inputs = op->inputs;
138
  auto output = op->outputs[0];
139 140 141 142 143 144 145 146
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));
147 148 149 150 151 152 153 154

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

155
  double scale_out = GetScaleValueForNode(output);
156
  unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
157
  float scale = scale_out * max;
158 159 160 161 162 163 164 165

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
166
    q_desc.SetAttr("Shift", shift);
167 168 169
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
170
    q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
171 172 173 174 175 176 177 178 179 180 181 182 183
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
184
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
185 186
}

187 188 189 190
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
191 192 193 194 195
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
196 197
                        "Var(%s) isn't the output of the %s operator.",
                        output_name, op->Op()->Type()));
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

227 228 229
bool CPUQuantizePass::AreScalesPresentForVarNames(
    std::vector<std::string> names) const {
  bool present = true;
B
baoachun 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto name : names) {
      if (scales.find(name) == scales.end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
    }
  } else {
    for (auto name : names) {
      if (var_quant_scales_->find(name) == var_quant_scales_->end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
244 245 246 247 248
    }
  }
  return present;
}

249
bool CPUQuantizePass::AreScalesPresentForNodes(
250
    std::initializer_list<Node*> nodes) const {
251
  bool present = true;
B
baoachun 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto node : nodes) {
      if (scales.count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
    }
  } else {
    for (auto node : nodes) {
      if (var_quant_scales_->count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
266 267 268 269 270
    }
  }
  return present;
}

271 272
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataByName(
    const std::string& name) const {
B
baoachun 已提交
273 274 275 276 277
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    return scales.at(name);
  }
  return var_quant_scales_->at(name);
278 279
}

280 281
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
282 283 284 285 286
  return GetScaleDataByName(node->Name());
}

LoDTensor CPUQuantizePass::GetScaleTensorByName(const std::string& name) const {
  return GetScaleDataByName(name).second;
287 288 289 290 291 292 293 294 295 296 297 298 299
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

300 301
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
302
         platform::HasOpINT8DataType(node->Op());
303 304 305
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
306 307 308 309 310 311
  // return true only if all of outputs are ops and their are either quantize or
  // have int8 data type
  return all_of(node->outputs.begin(), node->outputs.end(), [](Node* output) {
    return (output->IsOp() && (output->Op()->Type() == "quantize" ||
                               platform::HasOpINT8DataType(output->Op())));
  });
312 313
}

B
baoachun 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
void CPUQuantizePass::GetQuantInfo(Graph* graph) const {
  std::unordered_map<std::string, std::vector<float>> info_map{};
  GetInfoFromTheFirstOp(graph, "has_quant_info", "var_quant_scales", &info_map);

  for (auto iter = info_map.begin(); iter != info_map.end(); iter++) {
    LoDTensor tensor;
    const int size = static_cast<int>(iter->second.size());
    auto* data = tensor.mutable_data<double>({size}, platform::CPUPlace());
    for (int i = 0; i < size; i++) {
      data[i] = static_cast<double>(iter->second[i]);
    }

    auto pair = std::make_pair(false, tensor);
    var_quant_scales_->insert(std::make_pair(iter->first, pair));
  }
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
345
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
346 347 348
      LogQuantizationDisabled(conv_op);
      return;
    }
349 350 351 352 353

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

354
    auto has_output_scale = AreScalesPresentForNodes({conv_output});
W
Wojciech Uss 已提交
355
    if (with_residual_data && !has_output_scale) {
356 357 358 359
      MarkAndLogCannotQuantizeOp(
          conv_op,
          "Conv op with ResidualData input cannot be quantized "
          "without output scale.");
W
Wojciech Uss 已提交
360 361 362
      return;
    }

363 364 365
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
366
      if (!AreScalesPresentForNodes(
367
              {conv_input, conv_filter, conv_residual_data})) {
368 369
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
370
        return;
371
      }
372 373 374 375 376 377 378 379

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
380
      if (!AreScalesPresentForNodes({conv_input, conv_filter})) {
381 382
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
383
        return;
384
      }
385 386
    }

387 388
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
389 390 391
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

392
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
393
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
394
                                     filter_scale_tensor.numel()};
395 396 397 398 399 400 401
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

402
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
403
    if (has_output_scale) {
404 405 406 407 408 409 410 411
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
      DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
412

413
    // change threshold in bounded ReLu
414 415
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
416 417 418 419
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
420
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
421 422
    }

423 424 425 426 427 428
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

429 430 431
  LogQuantizedOpsCounter(
      "conv2d", quantize_conv_count,
      ((with_residual_data) ? "with residual connection" : ""));
432 433
}

M
Michał Gallus 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
451
    if (!platform::HasOpINT8DataType(fc->Op())) {
452 453 454
      LogQuantizationDisabled(fc);
      return;
    }
455
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
456
      MarkAndLogCannotQuantizeOp(fc, "use_mkldnn attribute set to false");
M
Michał Gallus 已提交
457
      return;
458
    }
M
Michał Gallus 已提交
459 460 461 462 463

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

464
    if (!AreScalesPresentForNodes({input, weights})) {
465
      MarkAndLogCannotQuantizeOp(fc, "No scale available for the operator");
466 467
      return;
    }
468

469 470
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
471 472 473
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

474
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
475
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
476
                                     weight_scale_tensor.numel()};
M
Michał Gallus 已提交
477 478 479 480 481 482 483
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

484
    // if quantization scale is missing for output tensor, return fp32 data
485
    if (AreScalesPresentForNodes({output})) {
486 487 488 489 490 491 492
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
      DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                       "Scale_out");
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
493 494 495 496 497 498

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);
499
  LogQuantizedOpsCounter("fc", quantize_fc_count);
M
Michał Gallus 已提交
500 501
}

502 503 504 505 506 507 508 509 510 511 512 513 514
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
515
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
516 517 518
      LogQuantizationDisabled(pool_op);
      return;
    }
519 520 521 522

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

523
    if (!AreScalesPresentForNodes({pool_input, pool_output})) {
524 525
      MarkAndLogCannotQuantizeOp(pool_op,
                                 "No scale available for the operator");
526 527
      return;
    }
528

529 530
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
531 532
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

533 534
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
535 536 537 538 539 540 541 542
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);
543
  LogQuantizedOpsCounter("pool2d", quantize_pool_count);
544 545
}

546 547 548 549 550 551 552 553 554 555 556 557 558
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
559
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
560 561 562
      LogQuantizationDisabled(concat_op);
      return;
    }
563 564 565

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

566
    if (!AreScalesPresentForNodes({concat_out})) {
567 568
      MarkAndLogCannotQuantizeOp(concat_op,
                                 "No scale available for the operator");
569 570
      return;
    }
571

572 573
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
574 575 576
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
577

578
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
579 580 581 582 583 584 585 586 587

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);
588
  LogQuantizedOpsCounter("concat", quantize_concat_count);
589 590
}

591 592 593 594 595 596 597 598 599 600 601 602 603
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
604
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
605 606 607
      LogQuantizationDisabled(prior_box_op);
      return;
    }
608 609 610 611

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

612
    if (!AreScalesPresentForNodes({prior_box_input})) {
613 614
      MarkAndLogCannotQuantizeOp(prior_box_op,
                                 "No scale available for the operator");
615 616
      return;
    }
617

618 619 620
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
621 622 623 624 625 626 627 628
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);
629
  LogQuantizedOpsCounter("prior_box", quantize_prior_box_count);
630 631
}

632 633 634 635 636 637 638 639 640 641 642 643 644
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);

    // skip if should not be quantized
645
    if (!platform::HasOpINT8DataType(transpose_op->Op())) {
646
      LogQuantizationDisabled(transpose_op);
647 648 649
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
650 651
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);
652

653
    // skip if prev op and next op is not quantized
654
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(transpose_out))) {
655 656
      MarkAndLogCannotQuantizeOp(transpose_op,
                                 "No other quantizable operators nearby");
657 658 659
      return;
    }

660
    if (!AreScalesPresentForNodes({transpose_in, transpose_out})) {
661 662
      MarkAndLogCannotQuantizeOp(transpose_op,
                                 "No scale available for the operator");
663
      return;
664
    }
665

666 667
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
668 669 670
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

671 672 673
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
674 675 676 677 678 679 680 681
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);
682
  LogQuantizedOpsCounter("transpose2", quantize_transpose_count);
683 684
}

685 686 687 688 689 690 691 692 693 694 695 696 697
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);

    // skip if should not be quantized
698
    if (!platform::HasOpINT8DataType(reshape_op->Op())) {
699
      LogQuantizationDisabled(reshape_op);
700 701 702
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
703 704
    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);
705

706 707
    // skip if prev op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(reshape_out))) {
708 709
      MarkAndLogCannotQuantizeOp(reshape_op,
                                 "No other quantizable operators nearby");
710 711 712
      return;
    }

713
    if (!AreScalesPresentForNodes({reshape_in, reshape_out})) {
714 715
      MarkAndLogCannotQuantizeOp(reshape_op,
                                 "No scale available for the operator");
716
      return;
717
    }
718

719 720
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
721 722 723
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

724 725
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
726 727 728 729 730 731 732 733
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);
734
  LogQuantizedOpsCounter("reshape2", quantize_reshape_count);
735 736
}

Z
Zuza 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
void CPUQuantizePass::QuantizeSlice(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Slice slice_pattern{pattern, name_scope_};
  slice_pattern();

  int quantize_slice_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize slice op";
    GET_IR_NODE_FROM_SUBGRAPH(slice_op, slice_op, slice_pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(slice_op->Op())) {
      LogQuantizationDisabled(slice_op);
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, slice_pattern);
755 756
    GET_IR_NODE_FROM_SUBGRAPH(slice_in, slice_in, slice_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(slice_out, slice_out, slice_pattern);
Z
Zuza 已提交
757 758

    // skip if prev op and next op is not quantized
759
    if (!IsOpDequantized(prev_op) && !IsOpQuantized(slice_out)) {
760 761
      MarkAndLogCannotQuantizeOp(slice_op,
                                 "No other quantizable operators nearby");
Z
Zuza 已提交
762 763 764 765
      return;
    }

    if (!AreScalesPresentForNodes({slice_out})) {
766 767
      MarkAndLogCannotQuantizeOp(slice_op,
                                 "No scale available for the operator");
Z
Zuza 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
      return;
    }

    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(slice_out, &is_input_unsigned);
    QuantizeInput(g, slice_op, slice_in, "Input", input_scale,
                  is_input_unsigned);

    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(slice_out, &is_output_unsigned);
    DequantizeOutput(g, slice_op, slice_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_slice_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_slice_count);
786
  LogQuantizedOpsCounter("slice", quantize_slice_count);
Z
Zuza 已提交
787 788
}

789 790 791
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
792
  patterns::MatmulWithInputOps matmul_pattern{pattern, name_scope_};
793 794 795 796 797 798 799 800 801
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
802
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
803
      LogQuantizationDisabled(matmul_op);
804 805 806 807 808 809 810
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
811 812
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No other quantizable operators nearby");
813 814 815 816 817 818
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

819
    if (!AreScalesPresentForNodes({matmul_in_x, matmul_in_y})) {
820 821
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No scale available for the operator");
822
      return;
823
    }
824

825 826 827
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
828 829 830 831 832 833
    PADDLE_ENFORCE_EQ(is_x_unsigned, is_y_unsigned,
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
                          is_x_unsigned, is_y_unsigned));
834 835 836 837 838
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

839
    // if quantization scale is missing for output tensor, return fp32 data
840
    if (AreScalesPresentForNodes({matmul_out})) {
841 842 843 844 845 846 847
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
      DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
848 849 850 851 852

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);
853
  LogQuantizedOpsCounter("matmul", quantize_matmul_count);
854 855
}

Z
Zuza 已提交
856 857
void CPUQuantizePass::QuantizeElementwise(
    Graph* graph, const std::string elementwise_type) const {
858 859
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
Z
Zuza 已提交
860
  patterns::Elementwise elementwise_pattern{pattern, name_scope_};
861

Z
Zuza 已提交
862 863 864 865
  elementwise_pattern(
      pattern->NewNode(elementwise_pattern.elementwise_x_repr()),
      pattern->NewNode(elementwise_pattern.elementwise_y_repr()),
      elementwise_type);
866

Z
Zuza 已提交
867
  int quantize_elementwise_count = 0;
868 869
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Z
Zuza 已提交
870 871 872
    VLOG(4) << "Quantize " + elementwise_type + " op";
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_op, elementwise_op,
                              elementwise_pattern);
873 874

    // skip if should not be quantized
Z
Zuza 已提交
875 876
    if (!platform::HasOpINT8DataType(elementwise_op->Op())) {
      LogQuantizationDisabled(elementwise_op);
877 878 879
      return;
    }

Z
Zuza 已提交
880 881 882 883 884 885
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_x, elementwise_x,
                              elementwise_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_y, elementwise_y,
                              elementwise_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_out, elementwise_out,
                              elementwise_pattern);
886

887
    if (!AreScalesPresentForNodes(
Z
Zuza 已提交
888
            {elementwise_x, elementwise_y, elementwise_out})) {
889 890
      MarkAndLogCannotQuantizeOp(elementwise_op,
                                 "No scale available for the operator");
891 892 893 894
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
Z
Zuza 已提交
895 896
    auto input_x_scale = GetScaleValueForNode(elementwise_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(elementwise_y, &is_y_unsigned);
897 898 899

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
900 901
      MarkAndLogCannotQuantizeOp(
          elementwise_op, "Elementwise inputs must be of the same type.");
902 903 904
      return;
    }

Z
Zuza 已提交
905
    QuantizeInput(g, elementwise_op, elementwise_x, "X", input_x_scale,
906
                  is_x_unsigned, "Scale_x");
Z
Zuza 已提交
907
    QuantizeInput(g, elementwise_op, elementwise_y, "Y", input_y_scale,
908 909
                  is_y_unsigned, "Scale_y");

910 911
    bool is_output_unsigned{false};
    auto output_scale =
Z
Zuza 已提交
912
        GetScaleValueForNode(elementwise_out, &is_output_unsigned);
913

Z
Zuza 已提交
914 915
    DequantizeOutput(g, elementwise_op, elementwise_out, "Out", output_scale,
                     is_output_unsigned, "Scale_out");
916

Z
Zuza 已提交
917
    ++quantize_elementwise_count;
918 919
  };
  gpd(graph, handler);
Z
Zuza 已提交
920
  AddStatis(quantize_elementwise_count);
921
  LogQuantizedOpsCounter(elementwise_type, quantize_elementwise_count);
922 923
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);

946
    if (!AreScalesPresentForNodes({x, weight_x})) {
947
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
948 949 950 951 952 953 954 955 956 957 958 959 960 961
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
962
                                     weight_scale_tensor.numel()};
963 964 965 966 967 968 969 970 971 972 973 974 975
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
976
  LogQuantizedOpsCounter("fusion_gru", quantize_count);
977 978
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
void CPUQuantizePass::QuantizeMultiGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::MultiGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize multi_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(gru->Op())) {
      LogQuantizationDisabled(gru);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(wx, wx, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(h, h, pattern);

    auto wx_names = gru->Op()->Input("WeightX");
    if (!AreScalesPresentForNodes({x}) ||
        !AreScalesPresentForVarNames(wx_names)) {
1003
      MarkAndLogCannotQuantizeOp(gru, "No scale available for the operator");
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, gru, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto* scope = param_scope();
    int wx_size = wx_names.size();
    std::vector<std::string> w_scale_var_names;
    for (int i = 0; i < wx_size; ++i) {
      auto scale_tensor_src = GetScaleTensorByName(wx_names[i]);
      EigenVectorArrayMap eigen_tensor_src{scale_tensor_src.data<double>(),
                                           scale_tensor_src.numel()};

      VarDesc scale_var_desc(patterns::PDNodeName("multi_gru", "w_scale"));

1026
      scale_var_desc.SetShape(phi::vectorize(scale_tensor_src.dims()));
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
      scale_var_desc.SetDataType(proto::VarType::FP32);
      scale_var_desc.SetLoDLevel(scale_tensor_src.lod().size());
      scale_var_desc.SetPersistable(true);
      auto* w_scale_node = g->CreateVarNode(&scale_var_desc);

      auto* w_scale_tensor_dst =
          scope->Var(w_scale_node->Name())->GetMutable<LoDTensor>();
      w_scale_tensor_dst->Resize(scale_tensor_src.dims());
      auto* dst_data =
          w_scale_tensor_dst->mutable_data<float>(platform::CPUPlace());
      EigenVectorArrayMapFloat eigen_tensor_dst{dst_data,
                                                w_scale_tensor_dst->numel()};
      eigen_tensor_dst =
          eigen_tensor_src.cast<float>() * static_cast<float>(S8_MAX);
      w_scale_var_names.push_back(w_scale_node->Name());
      IR_NODE_LINK_TO(w_scale_node, gru);
    }

    gru->Op()->SetInput("Scale_weights", w_scale_var_names);
    // return fp32 data
    gru->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1053
  LogQuantizedOpsCounter("multi_gru", quantize_count);
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
void CPUQuantizePass::QuantizeFusionLSTM(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionLSTM pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_lstm op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(hidden, hidden, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(cell, cell, pattern);

    // Starting from here there maybe issues
    if (!AreScalesPresentForNodes({x, weight_x})) {
1081
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel()};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1110
  LogQuantizedOpsCounter("fusion_lstm", quantize_count);
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
void CPUQuantizePass::QuantizeNearestInterp(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::NearestInterp nearest_interp_pattern{pattern, name_scope_};
  nearest_interp_pattern();

  int quantize_nearest_interp_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize nearest_interp op";
    GET_IR_NODE_FROM_SUBGRAPH(nearest_interp_op, nearest_interp_op,
                              nearest_interp_pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(nearest_interp_op->Op())) {
      LogQuantizationDisabled(nearest_interp_op);
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, nearest_interp_pattern);
1132 1133 1134 1135
    GET_IR_NODE_FROM_SUBGRAPH(nearest_interp_in, nearest_interp_in,
                              nearest_interp_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(nearest_interp_out, nearest_interp_out,
                              nearest_interp_pattern);
1136 1137

    // skip if prev op and next op is not quantized
1138
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(nearest_interp_out))) {
1139 1140
      MarkAndLogCannotQuantizeOp(nearest_interp_op,
                                 "No other quantizable operators nearby");
1141 1142 1143 1144
      return;
    }

    if (!AreScalesPresentForNodes({nearest_interp_in, nearest_interp_out})) {
1145 1146
      MarkAndLogCannotQuantizeOp(nearest_interp_op,
                                 "No scale available for the operator");
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
      return;
    }

    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(nearest_interp_in, &is_input_unsigned);
    QuantizeInput(g, nearest_interp_op, nearest_interp_in, "X", input_scale,
                  is_input_unsigned);

    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(nearest_interp_out, &is_output_unsigned);
    DequantizeOutput(g, nearest_interp_op, nearest_interp_out, "Out",
                     output_scale, is_output_unsigned);

    ++quantize_nearest_interp_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_nearest_interp_count);
1167
  LogQuantizedOpsCounter("nearest_interp", quantize_nearest_interp_count);
1168 1169
}

1170
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
1171
  VLOG(3) << "Quantizing the graph.";
1172 1173
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
1174
  FusePassBase::Init(name_scope_, graph);
1175

1176 1177
  PADDLE_ENFORCE_NOT_NULL(param_scope(), platform::errors::InvalidArgument(
                                             "Scope cannot be nullptr."));
1178

B
baoachun 已提交
1179
  GetQuantInfo(graph);
1180 1181 1182
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
1183
  QuantizeConcat(graph);
1184
  QuantizePriorBox(graph);
1185
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
1186
  QuantizeFc(graph);
1187
  QuantizeReshape(graph);
1188
  QuantizeMatmul(graph);
Z
Zuza 已提交
1189 1190
  QuantizeElementwise(graph, "elementwise_add");
  QuantizeElementwise(graph, "elementwise_mul");
1191
  QuantizeElementwise(graph, "elementwise_sub");
1192
  QuantizeFusionGru(graph);
1193
  QuantizeMultiGru(graph);
1194
  QuantizeFusionLSTM(graph);
Z
Zuza 已提交
1195
  QuantizeSlice(graph);
1196
  QuantizeNearestInterp(graph);
1197 1198 1199 1200 1201 1202 1203 1204
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");