cpu_quantize_pass.cc 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
16
#include <limits>
17
#include <sstream>
18 19 20
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
M
Michał Gallus 已提交
21
#include "paddle/fluid/platform/errors.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
                                    bool is_unsigned,
                                    std::string scale_attr_name) const {
M
Michał Gallus 已提交
48 49 50 51 52 53 54
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
  PADDLE_ENFORCE_EQ(
      name_found, true,
      platform::errors::InvalidArgument("%s isn't the input of the %s operator",
                                        input_name, op->Op()->Type()));
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
  q_desc.SetAttr("is_negative_input", !is_unsigned);
70 71 72

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

88
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
89
                                     bool are_unsigned,
90 91
                                     std::string scale_attr_name) const {
  auto inputs = op->inputs;
92
  auto output = op->outputs[0];
93
  PADDLE_ENFORCE_GE(inputs.size(), 1);
94
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1);
95 96 97 98 99 100 101 102

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

103
  double scale_out = GetScaleValueForNode(output);
104
  unsigned max = are_unsigned ? U8_MAX : S8_MAX;
105
  float scale = scale_out * max;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("is_negative_input", !are_unsigned);
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

133 134 135 136
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
137 138 139 140 141 142 143
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "%s isn't the output of the %s operator", output_name,
                        op->Op()->Type()));
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
bool CPUQuantizePass::AreScalesPresentForNodes(
    const Node* op_node, std::initializer_list<Node*> nodes) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
      std::stringstream msg_ss;
      msg_ss << "Quantization scale for the variable " << node->Name()
             << " is missing.";
      PrettyLogDetail(msg_ss.str().c_str());
    }
  }
  if (!present) {
    std::stringstream msg_ss;
    msg_ss << "Cannot quantize operator " << op_node->Name()
           << " (type: " << op_node->Op()->Type() << ").";
    PrettyLogDetail(msg_ss.str().c_str());
  }
  return present;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales[node->Name()];
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

212 213 214 215 216 217 218 219 220 221
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
    auto* conv_op_desc = conv_op->Op();

    // skip if should not be quantized
237
    if (!conv_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
238 239 240 241 242

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
      if (!AreScalesPresentForNodes(conv_op, {conv_input, conv_filter,
                                              conv_residual_data, conv_output}))
        return;

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
      if (!AreScalesPresentForNodes(conv_op,
                                    {conv_input, conv_filter, conv_output}))
        return;
    }

262 263
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
264 265 266
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

267
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
268 269 270 271 272 273 274 275 276
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
                                     filter_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

277 278
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(conv_output, &is_output_unsigned);
279 280 281
    DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                     is_output_unsigned, "Scale_out");

282
    // change threshold in bounded ReLu
283 284
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
285 286 287 288
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
289
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
290 291
    }

292 293 294 295 296 297 298 299 300 301 302 303
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);
    auto* fc_op_desc = fc->Op();

    // skip if should not be quantized
    if (fc_op_desc->GetAttrIfExists<bool>("use_quantizer") != true ||
        fc_op_desc->GetAttrIfExists<bool>("use_mkldnn") != true)
      return;

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

330 331
    if (!AreScalesPresentForNodes(fc, {input, weights, output})) return;

332 333
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
334 335 336
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

337
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
338 339 340 341 342 343 344 345 346
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

347 348
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
M
Michał Gallus 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362
    DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                     "Scale_out");

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);
    auto* pool_op_desc = pool_op->Op();

    // skip if should not be quantized
377
    if (!pool_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
378 379 380 381

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

382 383
    if (!AreScalesPresentForNodes(pool_op, {pool_input, pool_output})) return;

384 385
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
386 387
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

388 389
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
390 391 392 393 394 395 396 397 398 399 400 401
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);
    auto* concat_op_desc = concat_op->Op();

    // skip if should not be quantized
416
    if (!concat_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
417 418 419

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

420 421
    if (!AreScalesPresentForNodes(concat_op, {concat_out})) return;

422 423
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
424 425 426
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
427

428
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
429 430 431 432 433 434 435 436 437 438 439 440 441

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);
    auto* prior_box_op_desc = prior_box_op->Op();

    // skip if should not be quantized
456
    if (!prior_box_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
457 458 459 460

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

461 462
    if (!AreScalesPresentForNodes(prior_box_op, {prior_box_input})) return;

463 464 465
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
466 467 468 469 470 471 472 473 474 475 476 477 478
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);
    auto* transpose_op_desc = transpose_op->Op();

    // skip if should not be quantized
    if (!transpose_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

499 500
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
501 502 503 504 505
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

506 507 508
    if (!AreScalesPresentForNodes(transpose_op, {transpose_in, transpose_out}))
      return;

509 510
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
511 512 513
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

514 515 516
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
517 518 519 520 521 522 523 524 525 526 527 528 529
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);
    auto* reshape_op_desc = reshape_op->Op();

    // skip if should not be quantized
    if (!reshape_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

550 551
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
552 553 554 555 556 557
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

558 559 560
    if (!AreScalesPresentForNodes(reshape_op, {reshape_in, reshape_out}))
      return;

561 562
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
563 564 565
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

566 567
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
568 569 570 571 572 573 574 575 576 577 578 579
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Matmul matmul_pattern{pattern, name_scope_};
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);
    auto* matmul_op_desc = matmul_op->Op();

    // skip if should not be quantized
    if (!matmul_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

608 609 610 611
    if (!AreScalesPresentForNodes(matmul_op,
                                  {matmul_in_x, matmul_in_y, matmul_out}))
      return;

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
    PADDLE_ENFORCE_EQ(
        is_x_unsigned, is_y_unsigned,
        platform::errors::InvalidArgument(
            "Matmul inputs should have the same value of is_unsigned"));
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
    DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                     is_output_unsigned, "Scale_out");

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

637
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
638
  VLOG(3) << "Quantizing the graph.";
639 640
  PADDLE_ENFORCE(graph);
  FusePassBase::Init(name_scope_, graph);
641 642 643

  PADDLE_ENFORCE(param_scope());

644 645 646
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
647
  QuantizeConcat(graph);
648
  QuantizePriorBox(graph);
649
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
650
  QuantizeFc(graph);
651
  QuantizeReshape(graph);
652
  QuantizeMatmul(graph);
653 654 655 656 657 658 659 660
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");