cpu_quantize_pass.cc 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
16
#include <limits>
17
#include <sstream>
18 19 20
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
M
Michał Gallus 已提交
21
#include "paddle/fluid/platform/errors.h"
22 23 24 25 26 27
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

28 29 30
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;

31 32 33 34 35 36 37 38 39
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

40
void LogCannotQuantizeOp(Node* op, const char* details = nullptr) {
41 42 43
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
44
  if (details) msg_ss << " " << details;
45 46 47 48
  PrettyLogDetail(msg_ss.str().c_str());
}

void LogScaleIsMissingForVar(Node* var) {
W
Wojciech Uss 已提交
49 50
  VLOG(4) << "Quantization scale for the variable " << var->Name()
          << " is missing.";
51 52
}

53 54 55 56 57 58 59
void LogQuantizationDisabled(Node* op) {
  std::stringstream msg_ss;
  VLOG(4) << "Qantization skipped for operator " << op->Name()
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
          << "). Attribute use_quantizer = false.";
}

60 61 62 63 64 65 66 67
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
                                    bool is_unsigned,
                                    std::string scale_attr_name) const {
M
Michał Gallus 已提交
68 69 70
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
71 72 73 74
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
                        input_name, op->Op()->Type()));
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
  q_desc.SetAttr("is_negative_input", !is_unsigned);
90 91 92

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

108
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
109
                                     bool are_unsigned,
110 111
                                     std::string scale_attr_name) const {
  auto inputs = op->inputs;
112
  auto output = op->outputs[0];
113 114 115 116 117 118 119 120
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));
121 122 123 124 125 126 127 128

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

129
  double scale_out = GetScaleValueForNode(output);
130
  unsigned max = are_unsigned ? U8_MAX : S8_MAX;
131
  float scale = scale_out * max;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("is_negative_input", !are_unsigned);
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

159 160 161 162
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
163 164 165 166 167
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
168 169
                        "Var(%s) isn't the output of the %s operator.",
                        output_name, op->Op()->Type()));
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

199 200 201 202 203 204 205
bool CPUQuantizePass::AreScalesPresentForNodes(
    const Node* op_node, std::initializer_list<Node*> nodes) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
206
      LogScaleIsMissingForVar(node);
207 208 209 210 211
    }
  }
  return present;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales[node->Name()];
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

229 230 231 232 233 234 235 236 237 238
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
    auto* conv_op_desc = conv_op->Op();

    // skip if should not be quantized
254 255 256 257
    if (!conv_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(conv_op);
      return;
    }
258 259 260 261 262

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

W
Wojciech Uss 已提交
263 264 265 266 267 268 269 270
    auto has_output_scale = AreScalesPresentForNodes(conv_op, {conv_output});
    if (with_residual_data && !has_output_scale) {
      LogCannotQuantizeOp(conv_op,
                          "Conv op with ResidualData input cannot be quantized "
                          "without output scale.");
      return;
    }

271 272 273
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
274 275 276
      if (!AreScalesPresentForNodes(
              conv_op, {conv_input, conv_filter, conv_residual_data})) {
        LogCannotQuantizeOp(conv_op);
277
        return;
278
      }
279 280 281 282 283 284 285 286

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
287 288
      if (!AreScalesPresentForNodes(conv_op, {conv_input, conv_filter})) {
        LogCannotQuantizeOp(conv_op);
289
        return;
290
      }
291 292
    }

293 294
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
295 296 297
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

298
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
299 300 301 302 303 304 305 306 307
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
                                     filter_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

308
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
309
    if (has_output_scale) {
310 311 312 313 314 315 316 317
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
      DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
318

319
    // change threshold in bounded ReLu
320 321
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
322 323 324 325
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
326
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
327 328
    }

329 330 331 332 333 334 335 336 337 338 339 340
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);
    auto* fc_op_desc = fc->Op();

    // skip if should not be quantized
359 360 361 362 363
    if (!fc_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(fc);
      return;
    }
    if (!fc_op_desc->GetAttrIfExists<bool>("use_mkldnn")) {
M
Michał Gallus 已提交
364
      return;
365
    }
M
Michał Gallus 已提交
366 367 368 369 370

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

371 372 373 374
    if (!AreScalesPresentForNodes(fc, {input, weights})) {
      LogCannotQuantizeOp(fc);
      return;
    }
375

376 377
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
378 379 380
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

381
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
382 383 384 385 386 387 388 389 390
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

391 392 393 394 395 396 397 398 399
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(fc, {output})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
      DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                       "Scale_out");
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
400 401 402 403 404 405 406 407 408 409 410 411

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);
    auto* pool_op_desc = pool_op->Op();

    // skip if should not be quantized
426 427 428 429
    if (!pool_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(pool_op);
      return;
    }
430 431 432 433

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

434 435 436 437
    if (!AreScalesPresentForNodes(pool_op, {pool_input, pool_output})) {
      LogCannotQuantizeOp(pool_op);
      return;
    }
438

439 440
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
441 442
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

443 444
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
445 446 447 448 449 450 451 452 453 454 455 456
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);
    auto* concat_op_desc = concat_op->Op();

    // skip if should not be quantized
471 472 473 474
    if (!concat_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(concat_op);
      return;
    }
475 476 477

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

478 479 480 481
    if (!AreScalesPresentForNodes(concat_op, {concat_out})) {
      LogCannotQuantizeOp(concat_op);
      return;
    }
482

483 484
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
485 486 487
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
488

489
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
490 491 492 493 494 495 496 497 498 499 500 501 502

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);
    auto* prior_box_op_desc = prior_box_op->Op();

    // skip if should not be quantized
517 518 519 520
    if (!prior_box_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(prior_box_op);
      return;
    }
521 522 523 524

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

525 526 527 528
    if (!AreScalesPresentForNodes(prior_box_op, {prior_box_input})) {
      LogCannotQuantizeOp(prior_box_op);
      return;
    }
529

530 531 532
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
533 534 535 536 537 538 539 540 541 542 543 544 545
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);
    auto* transpose_op_desc = transpose_op->Op();

    // skip if should not be quantized
    if (!transpose_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
561
      LogQuantizationDisabled(transpose_op);
562 563 564 565 566
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

567 568
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
569 570 571 572 573
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

574 575 576
    if (!AreScalesPresentForNodes(transpose_op,
                                  {transpose_in, transpose_out})) {
      LogCannotQuantizeOp(transpose_op);
577
      return;
578
    }
579

580 581
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
582 583 584
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

585 586 587
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
588 589 590 591 592 593 594 595 596 597 598 599 600
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);
    auto* reshape_op_desc = reshape_op->Op();

    // skip if should not be quantized
    if (!reshape_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
616
      LogQuantizationDisabled(reshape_op);
617 618 619 620 621
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

622 623
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
624 625 626 627 628 629
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

630 631
    if (!AreScalesPresentForNodes(reshape_op, {reshape_in, reshape_out})) {
      LogCannotQuantizeOp(reshape_op);
632
      return;
633
    }
634

635 636
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
637 638 639
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

640 641
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
642 643 644 645 646 647 648 649 650 651 652 653
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Matmul matmul_pattern{pattern, name_scope_};
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);
    auto* matmul_op_desc = matmul_op->Op();

    // skip if should not be quantized
    if (!matmul_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
669
      LogQuantizationDisabled(matmul_op);
670 671 672 673 674 675 676 677 678 679 680 681 682
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

683 684
    if (!AreScalesPresentForNodes(matmul_op, {matmul_in_x, matmul_in_y})) {
      LogCannotQuantizeOp(matmul_op);
685
      return;
686
    }
687

688 689 690
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
691 692 693 694 695 696
    PADDLE_ENFORCE_EQ(is_x_unsigned, is_y_unsigned,
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
                          is_x_unsigned, is_y_unsigned));
697 698 699 700 701
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

702 703 704 705 706 707 708 709 710
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(matmul_op, {matmul_out})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
      DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
711 712 713 714 715 716 717 718 719

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};

  elementwise_add_pattern(
      pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
      pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));

  int quantize_elementwise_add_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize elementwise_add op";
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
                              elementwise_add_pattern);
    auto* elementwise_add_op_desc = elementwise_add_op->Op();

    // skip if should not be quantized
    if (!elementwise_add_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      LogQuantizationDisabled(elementwise_add_op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
                              elementwise_add_pattern);

    if (!AreScalesPresentForNodes(elementwise_add_op,
                                  {elementwise_add_x, elementwise_add_y})) {
      LogCannotQuantizeOp(elementwise_add_op);
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale =
        GetScaleValueForNode(elementwise_add_x, &is_x_unsigned);
    auto input_y_scale =
        GetScaleValueForNode(elementwise_add_y, &is_y_unsigned);

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
      LogCannotQuantizeOp(elementwise_add_op,
                          "ElementwiseAdd inputs must be of the same type.");
      return;
    }

    QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale,
                  is_x_unsigned, "Scale_x");
    QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale,
                  is_y_unsigned, "Scale_y");

    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(elementwise_add_op, {elementwise_add_out})) {
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(elementwise_add_out, &is_output_unsigned);
      DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out",
                       output_scale, is_output_unsigned, "Scale_out");
    } else {
      elementwise_add_op->Op()->SetAttr("force_fp32_output", true);
    }

    ++quantize_elementwise_add_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_elementwise_add_count);

  PrettyLogDetail("---    quantized %d elementwise_add ops",
                  quantize_elementwise_add_count);
}

794
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
795
  VLOG(3) << "Quantizing the graph.";
796 797
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
798
  FusePassBase::Init(name_scope_, graph);
799

800 801
  PADDLE_ENFORCE_NOT_NULL(param_scope(), platform::errors::InvalidArgument(
                                             "Scope cannot be nullptr."));
802

803 804 805
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
806
  QuantizeConcat(graph);
807
  QuantizePriorBox(graph);
808
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
809
  QuantizeFc(graph);
810
  QuantizeReshape(graph);
811
  QuantizeMatmul(graph);
812
  QuantizeElementwiseAdd(graph);
813 814 815 816 817 818 819 820
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");