“f878c0c6ba3e91038e40ce6dc1a4eed3b16931b4”上不存在“git@gitcode.net:s920243400/PaddleDetection.git”
cpu_quantize_pass.cc 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
W
wanghuancoder 已提交
16

17
#include <sstream>
18 19
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

21
#include "paddle/fluid/platform/mkldnn_helper.h"
22 23 24 25 26 27
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

28
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
29 30
using EigenVectorArrayMapFloat =
    Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
31 32
using string::PrettyLogDetail;

33 34 35 36 37 38 39 40 41
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

42
void LogCannotQuantizeOp(Node* op, const char* details = nullptr) {
43 44 45
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
46
  if (details) msg_ss << " " << details;
47 48 49
  PrettyLogDetail(msg_ss.str().c_str());
}

50 51 52 53 54 55
void LogScaleIsMissingForVarName(const std::string& name) {
  VLOG(4) << "Quantization scale for the variable " << name << " is missing.";
}

void LogScaleIsMissingForVarNode(Node* node) {
  LogScaleIsMissingForVarName(node->Name());
56 57
}

58 59 60 61
void LogQuantizationDisabled(Node* op) {
  std::stringstream msg_ss;
  VLOG(4) << "Qantization skipped for operator " << op->Name()
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
62
          << "). Attribute mkldnn_data_type != \"int8\".";
63 64
}

65 66 67 68 69 70
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
71 72 73
                                    bool is_input_unsigned,
                                    std::string scale_attr_name, float shift,
                                    std::string shift_attr_name) const {
M
Michał Gallus 已提交
74 75 76
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
77 78 79 80
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
                        input_name, op->Op()->Type()));
81
  unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
82 83 84 85 86 87 88 89 90 91 92 93 94
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
95 96
  q_desc.SetAttr("Shift", shift);
  q_desc.SetAttr("is_negative_input", !is_input_unsigned);
97 98 99

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
100 101 102 103 104 105 106 107 108 109 110 111 112
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
113
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
114 115
}

116
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
117 118 119
                                     bool are_inputs_unsigned,
                                     std::string scale_attr_name, float shift,
                                     std::string shift_attr_name) const {
120
  auto inputs = op->inputs;
121
  auto output = op->outputs[0];
122 123 124 125 126 127 128 129
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));
130 131 132 133 134 135 136 137

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

138
  double scale_out = GetScaleValueForNode(output);
139
  unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
140
  float scale = scale_out * max;
141 142 143 144 145 146 147 148

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
149
    q_desc.SetAttr("Shift", shift);
150 151 152
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
153
    q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
154 155 156 157 158 159 160 161 162 163 164 165 166
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
167
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
168 169
}

170 171 172 173
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
174 175 176 177 178
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
179 180
                        "Var(%s) isn't the output of the %s operator.",
                        output_name, op->Op()->Type()));
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

210 211 212 213 214 215 216 217 218 219 220 221 222
bool CPUQuantizePass::AreScalesPresentForVarNames(
    std::vector<std::string> names) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto name : names) {
    if (scales.find(name) == scales.end()) {
      present = false;
      LogScaleIsMissingForVarName(name);
    }
  }
  return present;
}

223
bool CPUQuantizePass::AreScalesPresentForNodes(
224
    std::initializer_list<Node*> nodes) const {
225 226 227 228 229
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
230
      LogScaleIsMissingForVarNode(node);
231 232 233 234 235
    }
  }
  return present;
}

236 237 238 239 240 241
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataByName(
    const std::string& name) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales.at(name);
}

242 243
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
244 245 246 247 248
  return GetScaleDataByName(node->Name());
}

LoDTensor CPUQuantizePass::GetScaleTensorByName(const std::string& name) const {
  return GetScaleDataByName(name).second;
249 250 251 252 253 254 255 256 257 258 259 260 261
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

262 263
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
264
         platform::HasOpINT8DataType(node->Op());
265 266 267 268
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
269
         platform::HasOpINT8DataType(node->Op());
270 271
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
286
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
287 288 289
      LogQuantizationDisabled(conv_op);
      return;
    }
290 291 292 293 294

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

295
    auto has_output_scale = AreScalesPresentForNodes({conv_output});
W
Wojciech Uss 已提交
296 297 298 299 300 301 302
    if (with_residual_data && !has_output_scale) {
      LogCannotQuantizeOp(conv_op,
                          "Conv op with ResidualData input cannot be quantized "
                          "without output scale.");
      return;
    }

303 304 305
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
306
      if (!AreScalesPresentForNodes(
307
              {conv_input, conv_filter, conv_residual_data})) {
308
        LogCannotQuantizeOp(conv_op);
309
        return;
310
      }
311 312 313 314 315 316 317 318

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
319
      if (!AreScalesPresentForNodes({conv_input, conv_filter})) {
320
        LogCannotQuantizeOp(conv_op);
321
        return;
322
      }
323 324
    }

325 326
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
327 328 329
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

330
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
331
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
332
                                     filter_scale_tensor.numel()};
333 334 335 336 337 338 339
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

340
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
341
    if (has_output_scale) {
342 343 344 345 346 347 348 349
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
      DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
350

351
    // change threshold in bounded ReLu
352 353
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
354 355 356 357
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
358
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
359 360
    }

361 362 363 364 365 366 367 368 369 370 371 372
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
390
    if (!platform::HasOpINT8DataType(fc->Op())) {
391 392 393
      LogQuantizationDisabled(fc);
      return;
    }
394
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
M
Michał Gallus 已提交
395
      return;
396
    }
M
Michał Gallus 已提交
397 398 399 400 401

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

402
    if (!AreScalesPresentForNodes({input, weights})) {
403 404 405
      LogCannotQuantizeOp(fc);
      return;
    }
406

407 408
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
409 410 411
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

412
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
413
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
414
                                     weight_scale_tensor.numel()};
M
Michał Gallus 已提交
415 416 417 418 419 420 421
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

422
    // if quantization scale is missing for output tensor, return fp32 data
423
    if (AreScalesPresentForNodes({output})) {
424 425 426 427 428 429 430
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
      DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                       "Scale_out");
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
431 432 433 434 435 436 437 438 439 440 441 442

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

443 444 445 446 447 448 449 450 451 452 453 454 455
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
456
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
457 458 459
      LogQuantizationDisabled(pool_op);
      return;
    }
460 461 462 463

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

464
    if (!AreScalesPresentForNodes({pool_input, pool_output})) {
465 466 467
      LogCannotQuantizeOp(pool_op);
      return;
    }
468

469 470
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
471 472
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

473 474
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
475 476 477 478 479 480 481 482 483 484 485 486
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

487 488 489 490 491 492 493 494 495 496 497 498 499
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
500
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
501 502 503
      LogQuantizationDisabled(concat_op);
      return;
    }
504 505 506

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

507
    if (!AreScalesPresentForNodes({concat_out})) {
508 509 510
      LogCannotQuantizeOp(concat_op);
      return;
    }
511

512 513
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
514 515 516
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
517

518
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
519 520 521 522 523 524 525 526 527 528 529 530 531

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

532 533 534 535 536 537 538 539 540 541 542 543 544
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
545
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
546 547 548
      LogQuantizationDisabled(prior_box_op);
      return;
    }
549 550 551 552

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

553
    if (!AreScalesPresentForNodes({prior_box_input})) {
554 555 556
      LogCannotQuantizeOp(prior_box_op);
      return;
    }
557

558 559 560
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
561 562 563 564 565 566 567 568 569 570 571 572 573
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

574 575 576 577 578 579 580 581 582 583 584 585 586
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);

    // skip if should not be quantized
587
    if (!platform::HasOpINT8DataType(transpose_op->Op())) {
588
      LogQuantizationDisabled(transpose_op);
589 590 591 592 593
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

594 595
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
596 597 598 599 600
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

601
    if (!AreScalesPresentForNodes({transpose_in, transpose_out})) {
602
      LogCannotQuantizeOp(transpose_op);
603
      return;
604
    }
605

606 607
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
608 609 610
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

611 612 613
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
614 615 616 617 618 619 620 621 622 623 624 625 626
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

627 628 629 630 631 632 633 634 635 636 637 638 639
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);

    // skip if should not be quantized
640
    if (!platform::HasOpINT8DataType(reshape_op->Op())) {
641
      LogQuantizationDisabled(reshape_op);
642 643 644 645 646
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

647 648
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
649 650 651 652 653 654
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

655
    if (!AreScalesPresentForNodes({reshape_in, reshape_out})) {
656
      LogCannotQuantizeOp(reshape_op);
657
      return;
658
    }
659

660 661
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
662 663 664
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

665 666
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
667 668 669 670 671 672 673 674 675 676 677 678
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

Z
Zuza 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
void CPUQuantizePass::QuantizeSlice(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Slice slice_pattern{pattern, name_scope_};
  slice_pattern();

  int quantize_slice_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize slice op";
    GET_IR_NODE_FROM_SUBGRAPH(slice_op, slice_op, slice_pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(slice_op->Op())) {
      LogQuantizationDisabled(slice_op);
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, slice_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, slice_pattern);

    // skip if prev op and next op is not quantized
    if (!IsOpDequantized(prev_op) && !IsOpQuantized(next_op)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(slice_in, slice_in, slice_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(slice_out, slice_out, slice_pattern);

    if (!AreScalesPresentForNodes({slice_out})) {
      LogCannotQuantizeOp(slice_op);
      return;
    }

    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(slice_out, &is_input_unsigned);
    QuantizeInput(g, slice_op, slice_in, "Input", input_scale,
                  is_input_unsigned);

    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(slice_out, &is_output_unsigned);
    DequantizeOutput(g, slice_op, slice_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_slice_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_slice_count);

  PrettyLogDetail("---    quantized %d slice ops", quantize_slice_count);
}

730 731 732
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
733
  patterns::MatmulWithInputOps matmul_pattern{pattern, name_scope_};
734 735 736 737 738 739 740 741 742
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
743
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
744
      LogQuantizationDisabled(matmul_op);
745 746 747 748 749 750 751 752 753 754 755 756 757
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

758
    if (!AreScalesPresentForNodes({matmul_in_x, matmul_in_y})) {
759
      LogCannotQuantizeOp(matmul_op);
760
      return;
761
    }
762

763 764 765
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
766 767 768 769 770 771
    PADDLE_ENFORCE_EQ(is_x_unsigned, is_y_unsigned,
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
                          is_x_unsigned, is_y_unsigned));
772 773 774 775 776
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

777
    // if quantization scale is missing for output tensor, return fp32 data
778
    if (AreScalesPresentForNodes({matmul_out})) {
779 780 781 782 783 784 785
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
      DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
786 787 788 789 790 791 792 793 794

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};

  elementwise_add_pattern(
      pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
      pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));

  int quantize_elementwise_add_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize elementwise_add op";
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
                              elementwise_add_pattern);

    // skip if should not be quantized
812
    if (!platform::HasOpINT8DataType(elementwise_add_op->Op())) {
813 814 815 816 817 818 819 820 821 822 823
      LogQuantizationDisabled(elementwise_add_op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
                              elementwise_add_pattern);

824 825
    if (!AreScalesPresentForNodes(
            {elementwise_add_x, elementwise_add_y, elementwise_add_out})) {
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
      LogCannotQuantizeOp(elementwise_add_op);
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale =
        GetScaleValueForNode(elementwise_add_x, &is_x_unsigned);
    auto input_y_scale =
        GetScaleValueForNode(elementwise_add_y, &is_y_unsigned);

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
      LogCannotQuantizeOp(elementwise_add_op,
                          "ElementwiseAdd inputs must be of the same type.");
      return;
    }

    QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale,
                  is_x_unsigned, "Scale_x");
    QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale,
                  is_y_unsigned, "Scale_y");

848 849 850 851 852 853
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(elementwise_add_out, &is_output_unsigned);

    DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out",
                     output_scale, is_output_unsigned, "Scale_out");
854 855 856 857 858 859 860 861 862 863

    ++quantize_elementwise_add_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_elementwise_add_count);

  PrettyLogDetail("---    quantized %d elementwise_add ops",
                  quantize_elementwise_add_count);
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);

886
    if (!AreScalesPresentForNodes({x, weight_x})) {
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
      LogCannotQuantizeOp(op);
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
902
                                     weight_scale_tensor.numel()};
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);

  PrettyLogDetail("---    quantized %d fusion_gru ops", quantize_count);
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
void CPUQuantizePass::QuantizeMultiGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::MultiGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize multi_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(gru->Op())) {
      LogQuantizationDisabled(gru);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(wx, wx, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(h, h, pattern);

    auto wx_names = gru->Op()->Input("WeightX");
    if (!AreScalesPresentForNodes({x}) ||
        !AreScalesPresentForVarNames(wx_names)) {
      LogCannotQuantizeOp(gru);
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, gru, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto* scope = param_scope();
    int wx_size = wx_names.size();
    std::vector<std::string> w_scale_var_names;
    for (int i = 0; i < wx_size; ++i) {
      auto scale_tensor_src = GetScaleTensorByName(wx_names[i]);
      EigenVectorArrayMap eigen_tensor_src{scale_tensor_src.data<double>(),
                                           scale_tensor_src.numel()};

      VarDesc scale_var_desc(patterns::PDNodeName("multi_gru", "w_scale"));

      scale_var_desc.SetShape(framework::vectorize(scale_tensor_src.dims()));
      scale_var_desc.SetDataType(proto::VarType::FP32);
      scale_var_desc.SetLoDLevel(scale_tensor_src.lod().size());
      scale_var_desc.SetPersistable(true);
      auto* w_scale_node = g->CreateVarNode(&scale_var_desc);

      auto* w_scale_tensor_dst =
          scope->Var(w_scale_node->Name())->GetMutable<LoDTensor>();
      w_scale_tensor_dst->Resize(scale_tensor_src.dims());
      auto* dst_data =
          w_scale_tensor_dst->mutable_data<float>(platform::CPUPlace());
      EigenVectorArrayMapFloat eigen_tensor_dst{dst_data,
                                                w_scale_tensor_dst->numel()};
      eigen_tensor_dst =
          eigen_tensor_src.cast<float>() * static_cast<float>(S8_MAX);
      w_scale_var_names.push_back(w_scale_node->Name());
      IR_NODE_LINK_TO(w_scale_node, gru);
    }

    gru->Op()->SetInput("Scale_weights", w_scale_var_names);
    // return fp32 data
    gru->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);

  PrettyLogDetail("---    quantized %d multi_gru ops", quantize_count);
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
void CPUQuantizePass::QuantizeFusionLSTM(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionLSTM pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_lstm op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(hidden, hidden, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(cell, cell, pattern);

    // Starting from here there maybe issues
    if (!AreScalesPresentForNodes({x, weight_x})) {
      LogCannotQuantizeOp(op);
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel()};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);

  PrettyLogDetail("---    quantized %d fusion_lstm ops", quantize_count);
}

1056
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
1057
  VLOG(3) << "Quantizing the graph.";
1058 1059
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
1060
  FusePassBase::Init(name_scope_, graph);
1061

1062 1063
  PADDLE_ENFORCE_NOT_NULL(param_scope(), platform::errors::InvalidArgument(
                                             "Scope cannot be nullptr."));
1064

1065 1066 1067
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
1068
  QuantizeConcat(graph);
1069
  QuantizePriorBox(graph);
1070
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
1071
  QuantizeFc(graph);
1072
  QuantizeReshape(graph);
1073
  QuantizeMatmul(graph);
1074
  QuantizeElementwiseAdd(graph);
1075
  QuantizeFusionGru(graph);
1076
  QuantizeMultiGru(graph);
1077
  QuantizeFusionLSTM(graph);
Z
Zuza 已提交
1078
  QuantizeSlice(graph);
1079 1080 1081 1082 1083 1084 1085 1086
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");