analysis_predictor.cc 69.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/ir/pass.h"
32
#include "paddle/fluid/framework/naive_executor.h"
33
#include "paddle/fluid/framework/op_proto_maker.h"
34
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
35
#include "paddle/fluid/framework/var_type_traits.h"
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
38
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
39
#include "paddle/fluid/inference/api/helper.h"
40
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
41
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
42
#include "paddle/fluid/inference/utils/io_utils.h"
43
#include "paddle/fluid/inference/utils/singleton.h"
44
#include "paddle/fluid/memory/memcpy.h"
45
#include "paddle/fluid/platform/cpu_helper.h"
46
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
47
#include "paddle/fluid/platform/device_context.h"
48
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
49
#include "paddle/fluid/platform/profiler.h"
50
#include "paddle/phi/api/ext/op_meta_info.h"
51 52 53 54 55 56 57 58
#include "paddle/utils/string/split.h"

#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
59

60 61 62 63
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

64 65 66 67
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

68 69 70 71
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

Y
Yan Chunwei 已提交
72 73
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
74
#include "paddle/fluid/inference/tensorrt/helper.h"
75
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
76 77
#endif

78 79
namespace paddle {

N
nhzlx 已提交
80
using inference::Singleton;
N
nhzlx 已提交
81
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
82
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
83 84
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
85
#endif
86

87 88
int AnalysisPredictor::clone_num_ = 1;

89 90 91 92
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
93 94
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
95 96 97 98 99 100
    return true;
  }
  return false;
}
}  // namespace

101 102
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
103
  framework::DDim ddim = phi::make_ddim(pt.shape);
104 105 106 107 108 109 110
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
111 112
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
J
jianghaicheng 已提交
131 132 133 134 135 136 137 138
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
139 140 141 142
  } else if (platform::is_gpu_place(place)) {
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
143
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
144 145 146
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
147
    auto dst_gpu_place = place;
148 149 150 151 152 153 154
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
155 156
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
157
    auto dst_xpu_place = place;
158 159 160 161 162 163 164 165 166
    memory::Copy(dst_xpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
167 168 169 170 171 172 173 174 175 176
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
177
bool AnalysisPredictor::Init(
178 179
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
180
  VLOG(3) << "Predictor::init()";
181 182
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
183 184
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
185
    platform::EnableProfiler(tracking_device);
186
  } else {
187 188
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
189 190
  }

191
  // no matter with or without MKLDNN
L
luotao1 已提交
192
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
193

194 195 196 197 198 199 200 201 202 203
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

204 205 206
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

207 208 209
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
210
  }
211 212 213 214 215 216

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
217
  if (parent_scope) {
218 219
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
220 221
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
222
    scope_ = parent_scope;
223
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
224
  } else {
225
    paddle::framework::InitDevices();
W
Wilber 已提交
226 227
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
228
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
229
  }
230 231 232 233 234
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
235 236
  if (!program) {
    if (!LoadProgramDesc()) return false;
237 238 239 240 241 242 243 244 245
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

246 247 248 249
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
250
  } else {
251 252
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
253 254
    inference_program_ = program;
  }
M
Michal Gallus 已提交
255

256 257 258 259 260
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
261
  if (config_.use_gpu()) {
262 263 264
    PADDLE_ENFORCE_EQ(config_.use_xpu(), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
265
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
266
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
267 268 269 270 271 272 273 274
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
275
  } else if (config_.use_xpu()) {
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
299 300 301 302 303 304 305 306
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
323 324 325 326 327 328 329 330
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
#endif
331 332 333 334 335 336
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
    std::shared_ptr<framework::ProgramDesc> inference_program, int block,
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
      DisablePrepareDataOpt(inference_program, blockID,
                            disable_opt || pre_disable_opt);
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
370 371 372
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
373 374 375
  }
}

376
bool AnalysisPredictor::PrepareExecutor() {
377 378 379 380 381 382 383
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
384 385
  DisablePrepareDataOpt(inference_program_, 0, false);

386
  executor_->Prepare(sub_scope_, *inference_program_, 0,
387
                     config_.use_feed_fetch_ops_);
388

389 390 391
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
392

393 394 395
  return true;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
                   *(inference_program_.get()), scope_.get(), place_, 1,
                   {task_node_.get()}, id_to_rank, feed_fetch_vars);
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
    InsertCommOp(var_name_base + std::to_string(order), ranks_in_group,
                 rank_in_group, peer_endpoints, comm_init_block, ring_id);
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
    std::string tmp_var_name, int nranks, int rank,
    const std::vector<std::string> &peer_endpoints, framework::BlockDesc *block,
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()), true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

616 617
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
618 619 620 621 622 623 624 625 626 627 628 629
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
630
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
631 632 633
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
634 635 636
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
637 638
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
639 640 641
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
642 643 644
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
645
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
646
  }
647 648 649
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

650 651 652 653 654 655
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
656 657 658 659
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
660 661 662 663 664 665 666 667
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
668 669 670
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
671 672 673 674
  }
#endif
}

675 676 677
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
678
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
679 680 681
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
682
  VLOG(3) << "Predictor::predict";
683 684 685 686
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
687 688
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
689 690
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
691
    return false;
692
  }
M
Michal Gallus 已提交
693

694 695 696
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
697

698 699 700 701
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
702
  }
Y
Yan Chunwei 已提交
703

M
minqiyang 已提交
704
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
705

Y
Yan Chunwei 已提交
706 707 708 709 710
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
711 712 713
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
714
  tensor_array_batch_cleaner_.ResetNoTensorVars();
715 716 717 718

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
719 720
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
721
#endif
722
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
723 724 725 726
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
727
#endif
728 729
  return true;
}
730

731 732
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
733
  VLOG(3) << "Predictor::set_feed";
734 735 736 737 738 739 740 741 742 743
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
744 745
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
746 747 748
      return false;
    }
    int idx = -1;
749
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
750 751
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
752 753
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
754 755
      }
      idx = feed_names_[name];
756
    } else {
757
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
758
    }
759
    framework::SetFeedVariable(scope, *input, "feed", idx);
760 761 762 763 764 765 766 767
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
768
  auto shape = phi::vectorize(fetch.dims());
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
786
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
787 788
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
789
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
790 791 792 793 794
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
795
    framework::FetchType &fetch_var =
796
        framework::GetFetchVariable(*scope, "fetch", idx);
797
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
798
    auto type = framework::TransToProtoVarType(fetch.dtype());
799
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
800
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
801
    if (type == framework::proto::VarType::FP32) {
802 803
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
804
    } else if (type == framework::proto::VarType::INT64) {
805 806
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
807 808 809
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
810 811 812
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
813
    } else {
814 815
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
816 817
    }
  }
Y
Yan Chunwei 已提交
818 819
  return true;
}
820

821
void AnalysisPredictor::PrepareArgument() {
822
  argument_.SetUseGPU(config_.use_gpu());
823
  argument_.SetUseFcPadding(config_.use_fc_padding());
824
  argument_.SetGPUDeviceId(config_.gpu_device_id());
825
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
826
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
827
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
828
  // Analyze inference_program
829
  argument_.SetPredictorID(predictor_id_);
830
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
831 832
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
833
  } else {
834 835 836
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
837
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
838

839 840
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
841
  }
842

843 844 845 846 847 848 849 850
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
  argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
851
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
852
    LOG(INFO) << "TensorRT subgraph engine is enabled";
853 854 855
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
856
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
857
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
858 859
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
860
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
861
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
862
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
863 864 865
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
866
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
W
Wojciech Uss 已提交
867
  }
868

D
denglin-github 已提交
869 870 871 872 873 874
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

875 876 877 878 879
  if (config_.gpu_fp16_enabled()) {
    argument_.SetUseGPUFp16(true);
    argument_.SetGpuFp16DisabledOpTypes(config_.gpu_fp16_disabled_op_types_);
  }

石晓伟 已提交
880
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
881 882
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
883 884 885
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
886 887 888
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
889 890 891 892 893
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
894
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
915 916 917
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

918
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
919 920
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
921
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
922 923
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
924 925 926 927 928 929
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
#endif
J
jianghaicheng 已提交
930

931 932 933
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

934
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
935
    LOG(INFO) << "MKLDNN is enabled";
936 937 938
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

939 940 941 942 943 944 945 946
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
947 948 949 950
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
951 952
#endif

953
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
954 955 956 957
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
958
  argument_.SetDisableLogs(config_.glog_info_disabled());
959
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
960
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
961
  argument_.SetScopeNotOwned(scope_.get());
962 963 964 965 966
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
967 968
  Analyzer().Run(&argument_);

969 970 971
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
972 973
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
974
  inference_program_.reset(
975 976 977 978 979
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
#if PADDLE_WITH_TENSORRT
W
Wilber 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
                BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
            int engine_predictor_id =
                BOOST_GET_CONST(int, op_desc->GetAttr("predictor_id"));
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
998 999 1000
#endif
        delete prog;
      });
1001 1002 1003 1004
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1005
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1006
}
1007 1008

template <>
1009 1010
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
1011 1012
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1013 1014 1015 1016
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1017
  VLOG(3) << "create AnalysisConfig";
1018 1019 1020 1021
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1022

1023 1024 1025 1026
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1027
                 []() { inference::RegisterAllCustomOperator(); });
1028

1029
  if (config.use_gpu()) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1054

1055 1056 1057 1058 1059 1060 1061 1062
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

W
Wilber 已提交
1063 1064 1065 1066 1067 1068 1069
// TODO(wilber): jetson tx2 may fail to run the model due to insufficient memory
// under the native_best_fit strategy. Modify the default allocation strategy to
// auto_growth. todo, find a more appropriate way to solve the problem.
#ifdef WITH_NV_JETSON
      gflags.push_back("--allocator_strategy=auto_growth");
#endif

1070 1071 1072 1073 1074 1075 1076 1077 1078
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1094 1095 1096 1097 1098 1099
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1100 1101 1102 1103
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1104 1105
  // Each config can only be used for one predictor.
  config.SetInValid();
1106 1107 1108 1109 1110 1111 1112
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1113 1114
    return nullptr;
  }
1115

G
Gabor Buella 已提交
1116
  return predictor;
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1131
void AnalysisPredictor::PrepareFeedFetch() {
1132 1133 1134
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1135
  CreateFeedFetchVar(sub_scope_);
1136 1137
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
1138
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
1139 1140 1141 1142 1143
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1144
      idx2feeds_[idx] = op->Output("Out")[0];
1145
    } else if (op->Type() == "fetch") {
1146
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1147 1148
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1149
      }
Y
Yan Chunwei 已提交
1150
      fetches_[idx] = op;
N
nhzlx 已提交
1151
      idx2fetches_[idx] = op->Input("X")[0];
1152 1153 1154 1155
    }
  }
}

1156
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
1157 1158
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
1159
  auto *var = scope->Var("feed");
1160
  var->GetMutable<framework::FeedList>();
1161
  var = scope->Var("fetch");
1162
  var->GetMutable<framework::FetchList>();
1163 1164
}

N
nhzlx 已提交
1165 1166 1167 1168 1169 1170 1171 1172
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1173 1174 1175 1176 1177 1178
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
1179 1180
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
1181 1182 1183 1184 1185
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
1186 1187 1188 1189 1190 1191 1192 1193
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1194 1195
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
  framework::Scope *scope;
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1207
  PADDLE_ENFORCE_NOT_NULL(
1208
      scope->FindVar(name),
1209
      platform::errors::PreconditionNotMet(
1210
          "The variable named %s is not found in the scope of the executor.",
1211
          name));
1212
  std::unique_ptr<ZeroCopyTensor> res(
1213
      new ZeroCopyTensor(static_cast<void *>(scope)));
1214 1215
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1216 1217
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1218 1219 1220 1221
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1222
  } else if (platform::is_xpu_place(place_)) {
1223 1224 1225 1226 1227 1228 1229 1230
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1231
      auto xpu_place = place_;
1232 1233
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1234
  } else if (platform::is_npu_place(place_)) {
1235
    auto npu_place = place_;
W
Wilber 已提交
1236
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
N
nhzlx 已提交
1237
  } else {
1238
    auto gpu_place = place_;
N
nhzlx 已提交
1239 1240
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1241 1242 1243 1244 1245
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  framework::Scope *scope;
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1257
  PADDLE_ENFORCE_NOT_NULL(
1258
      scope->FindVar(name),
1259
      platform::errors::PreconditionNotMet(
1260
          "The variable named %s is not found in the scope of the executor.",
1261
          name));
1262
  std::unique_ptr<ZeroCopyTensor> res(
1263
      new ZeroCopyTensor(static_cast<void *>(scope)));
1264 1265
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1266 1267
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1268 1269 1270 1271
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1272
  } else if (platform::is_xpu_place(place_)) {
1273 1274 1275 1276 1277 1278 1279 1280
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1281
      auto xpu_place = place_;
1282 1283
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1284
  } else if (platform::is_npu_place(place_)) {
1285
    auto npu_place = place_;
W
Wilber 已提交
1286
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
N
nhzlx 已提交
1287
  } else {
1288
    auto gpu_place = place_;
N
nhzlx 已提交
1289 1290
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1291 1292 1293 1294
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1307
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1319
  executor_->Run();
1320 1321 1322 1323 1324

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1325
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1326
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1327
  tensor_array_batch_cleaner_.ResetTensorArray();
1328 1329 1330 1331

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
1332 1333 1334
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1335
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1336 1337 1338 1339 1340
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1341 1342 1343
  return true;
}

W
Wilber 已提交
1344 1345 1346 1347 1348
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
  if (stream != nullptr) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1349
    auto gpu_place = place_;
W
Wilber 已提交
1350 1351 1352 1353 1354 1355 1356 1357
    auto *dev_ctx = reinterpret_cast<paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
    dev_ctx->SetThreadLocalStream(stream);
  }
  return ZeroCopyRun();
}
#endif

1358 1359 1360 1361 1362 1363
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1364
    auto gpu_place = place_;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
    if (!var->IsType<framework::LoDTensor>()) {
      continue;
    }
    framework::DDim dim = var->Get<framework::LoDTensor>().dims();
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
  for (auto it : shape_info_) {
    auto name = it.first;
    auto shapes = it.second;

    std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

    auto ShapeMaxFreq = [](const std::map<int32_t, int32_t> &m) -> int32_t {
      std::vector<std::pair<int32_t, int32_t>> counter;
      for (auto &it : m) counter.push_back(it);
      std::sort(
          counter.begin(), counter.end(),
          [](std::pair<int32_t, int32_t> &a, std::pair<int32_t, int32_t> &b) {
            return a.second > b.second;
          });
      return counter[0].first;
    };

    for (size_t d = 0; d < shapes[0].size(); ++d) {
      std::map<int32_t, int32_t> counter;
      for (size_t i = 0; i < shapes.size(); ++i) {
        counter[shapes[i][d]] += 1;
        if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
        if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
      }
      opt_shape[d] = ShapeMaxFreq(counter);
    }

    min_shapes[name] = min_shape;
    max_shapes[name] = max_shape;
    opt_shapes[name] = opt_shape;
  }

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes, max_shapes, opt_shapes);
}

1430 1431
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1432
  std::string filename;
1433 1434
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1435
  } else if (!config_.prog_file().empty()) {
1436 1437 1438
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1439
    filename = config_.prog_file();
1440
  } else {
1441
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1442 1443 1444 1445
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1446
    LOG(ERROR) << string::Sprintf(
1447 1448
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
1449 1450
    return false;
  }
1451 1452 1453

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1454
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1455 1456 1457
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1458 1459 1460 1461 1462
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1463 1464 1465 1466 1467 1468 1469 1470
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1471
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1472
  }
1473 1474 1475 1476 1477 1478
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1479 1480
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1502
      if (!config_.params_file().empty()) {
1503 1504 1505 1506 1507 1508
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1509
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1510 1511 1512 1513 1514
        op->CheckAttrs();
      }
    }
  }

1515
  if (!config_.params_file().empty()) {
1516 1517 1518 1519 1520 1521
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1522
    op->SetAttr("file_path", {config_.params_file()});
1523 1524 1525 1526
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1527
  framework::NaiveExecutor e(place_);
1528 1529 1530 1531
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1532 1533
  return true;
}
1534

1535 1536 1537 1538 1539
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1559
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1560
bool AnalysisPredictor::SaveTrtCalibToDisk() {
1561 1562 1563
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1564 1565 1566
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
1567 1568
      std::string engine_name = BOOST_GET_CONST(
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1569
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1570 1571 1572 1573
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1574 1575
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1576
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1577
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1578 1579
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1580 1581 1582
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1583

N
nhzlx 已提交
1584
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1585 1586 1587
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1588

N
nhzlx 已提交
1589 1590 1591 1592 1593
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1594
      std::string calibration_table_data_path =
N
nhzlx 已提交
1595 1596 1597 1598
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1599 1600 1601 1602 1603

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1604 1605 1606 1607
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1608
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1609 1610
  return true;
}
N
nhzlx 已提交
1611
#endif
N
nhzlx 已提交
1612

1613
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1614
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1615
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1616 1617
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1618 1619
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1620
#endif
1621
  if (config_.with_profile_) {
1622 1623 1624 1625 1626 1627
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1628

1629 1630 1631 1632 1633 1634
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1635

1636 1637 1638 1639
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }

1640
  memory::Release(place_);
1641 1642
}

1643
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1644
  std::lock_guard<std::mutex> lk(clone_mutex_);
1645 1646
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
1647
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
1648 1649 1650
  return std::unique_ptr<PaddlePredictor>(x);
}

1651
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1652 1653 1654
  return inference_program_->Proto()->SerializeAsString();
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1694
template <>
1695 1696
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1697
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1698 1699
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1700 1701
}

1702
}  // namespace paddle
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1713 1714
USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten);
1715
USE_TRT_CONVERTER(flatten_contiguous_range);
1716
USE_TRT_CONVERTER(matmul);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1728 1729
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1730
USE_TRT_CONVERTER(split);
1731 1732
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1733
USE_TRT_CONVERTER(leaky_relu);
1734 1735
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1736
USE_TRT_CONVERTER(group_norm);
1737
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1738 1739 1740
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1741 1742
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1743
USE_TRT_CONVERTER(slice);
1744
USE_TRT_CONVERTER(scale);
1745
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
1746
USE_TRT_CONVERTER(clip);
1747
USE_TRT_CONVERTER(gather);
1748
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
1749
USE_TRT_CONVERTER(yolo_box);
1750
USE_TRT_CONVERTER(roi_align);
1751
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
1752
USE_TRT_CONVERTER(multiclass_nms);
1753
USE_TRT_CONVERTER(nearest_interp);
1754
USE_TRT_CONVERTER(nearest_interp_v2);
W
Wangzheee 已提交
1755
USE_TRT_CONVERTER(reshape);
1756 1757
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
1758
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
1759
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
1760 1761
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
1762
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
1763
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
1764
USE_TRT_CONVERTER(pool3d)
1765 1766
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
1767
#endif
W
Wilber 已提交
1768 1769 1770 1771 1772 1773

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
      predictor_ = paddle::CreatePaddlePredictor<
          Config, paddle::PaddleEngineKind::kONNXRuntime>(config);
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
W
Wilber 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
1804
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
1805 1806 1807 1808 1809 1810 1811
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
1812
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1827 1828
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
1927 1928 1929 1930 1931 1932
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
1933
}  // namespace experimental
W
Wilber 已提交
1934
}  // namespace paddle_infer