distribute_transpiler.py 74.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
42 43
    default_startup_program, Block, \
    Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
53 54 55 56 57 58 59 60 61
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
62 63


T
typhoonzero 已提交
64 65 66 67 68 69
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
70

T
typhoonzero 已提交
71 72
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
73 74


75 76 77 78
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
79
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
80
    """
81 82 83 84 85 86
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
87
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
88 89 90

    Args:
        var_list (list): List of variables.
91 92
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
93 94
        min_block_size (int): Minimum splitted block size.
    Returns:
95
        blocks (list[(varname, block_id, current_block_size)]): A list
96
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
97 98 99
    """
    blocks = []
    for var in var_list:
100
        split_count = slice_count
T
typhoonzero 已提交
101 102 103 104
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
105
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
106 107 108 109 110 111 112 113 114
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
115
        # update split_count after aligning
T
typhoonzero 已提交
116
        split_count = int(math.ceil(var_numel / float(block_size)))
117
        for block_id in range(split_count):
T
typhoonzero 已提交
118 119 120 121 122 123 124
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
125 126 127 128 129 130 131
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
132
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
133 134 135 136 137 138
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
139 140
    # supported modes: pserver, nccl2
    mode = "pserver"
141
    print_log = False
G
gongweibao 已提交
142 143


Y
gen rst  
yi.wu 已提交
144
class DistributeTranspiler(object):
Y
yi.wu 已提交
145 146 147 148
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
149
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
150

W
Wu Yi 已提交
151 152 153 154 155 156 157 158 159
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
160 161 162 163

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
164 165 166 167 168 169
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
170 171
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
172
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
173 174 175 176 177 178 179 180
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
181

W
Wu Yi 已提交
182 183 184 185 186 187 188 189 190 191 192
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
193
    """
Y
Yancey1989 已提交
194

G
gongweibao 已提交
195 196 197 198 199 200 201 202 203
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

204 205 206
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
207 208 209
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

237 238 239 240 241
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
242
                  sync_mode=True,
W
Wu Yi 已提交
243 244
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
245
        """
Y
yi.wu 已提交
246 247 248 249 250 251 252 253 254
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
255 256 257
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
258
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
259 260
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
261 262 263
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
264 265 266
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
267 268
        if startup_program is None:
            startup_program = default_startup_program()
269
        self.origin_program = program
W
Wu Yi 已提交
270 271
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
272

W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

282 283 284 285 286 287 288
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
289
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
290
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
291
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
292
        self.grad_name_to_param_name = dict()
293 294
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
295
            self.grad_name_to_param_name[grad_var.name] = param_var.name
296

T
tangwei12 已提交
297 298 299 300 301 302
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

303
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
304
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
305
        self._init_splited_vars()
306

G
gongweibao 已提交
307
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
308
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
309
        send_vars = []
310 311 312 313 314 315

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
316
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
317

G
gongweibao 已提交
318
        if not self.config.slice_var_up:
319 320
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
321

322
        self.grad_name_to_send_dummy_out = dict()
323
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
324
            eplist = ps_dispatcher.dispatch(splited_vars)
325

G
gongweibao 已提交
326
            if not self.config.slice_var_up:
327 328
                assert (len(splited_vars) == 1)

329
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
330
            if len(splited_vars) == 1:
331
                splited_grad_varname = splited_vars[0].name
332 333
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
334
            elif len(splited_vars) > 1:
335
                orig_var = program.global_block().vars[splited_grad_varname]
336 337
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
338
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
339
                index += 1
Y
Yancey1989 已提交
340 341
            else:
                AssertionError("Can not insert the send op by original "
342
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
343

W
Wu Yi 已提交
344 345
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
346
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
347

W
Wu Yi 已提交
348 349 350 351
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
352
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
353
                index=index + 1,
354
                type="send",
Y
update  
Yancey1989 已提交
355
                inputs={"X": splited_vars},
356
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
357 358
                attrs={
                    "epmap": eplist,
359
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
360 361 362 363
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
364
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
365
                })
Y
update  
Yancey1989 已提交
366 367
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
368 369

        if self.sync_mode:
W
Wu Yi 已提交
370 371
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
372 373 374 375
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
376
            input_deps = list(self.grad_name_to_send_dummy_out.values())
377

Y
Yancey1989 已提交
378 379
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
380
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
381
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
382 383
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
384
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
385
                })
Y
Yancey1989 已提交
386

G
gongweibao 已提交
387
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
388
        recv_vars = []
Y
update  
Yancey1989 已提交
389
        for _, var in enumerate(send_vars):
390
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
391
        ps_dispatcher.reset()
Y
Yancey1989 已提交
392 393
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
394
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
395 396
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
397

Y
Yancey1989 已提交
398
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
399
        all_recv_outputs = []
400
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
401 402 403 404
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
405 406 407 408
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
409
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
410 411
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
412 413 414 415 416 417 418 419 420
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
421 422
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
423
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
424 425 426
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
427
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
428 429
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
430
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
431
                })
T
typhoonzero 已提交
432

Q
qiaolongfei 已提交
433
        if self.sync_mode:
W
Wu Yi 已提交
434
            # form a WAW dependency
Q
qiaolongfei 已提交
435 436 437
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
438
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
439 440 441 442
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
443

444
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
445 446
            if len(splited_var) <= 1:
                continue
447
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
448
            program.global_block().append_op(
T
typhoonzero 已提交
449
                type="concat",
T
typhoonzero 已提交
450
                inputs={"X": splited_var},
T
typhoonzero 已提交
451
                outputs={"Out": [orig_param]},
452 453 454 455
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
456

G
gongweibao 已提交
457 458
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

459
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
460 461
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
462
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
463

W
Wu Yi 已提交
464
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
465 466 467 468 469 470
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
471
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
472
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
473
        lr_ops = self._get_lr_ops()
474
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
475 476
        delete_ops(self.origin_program.global_block(), lr_ops)

477 478 479 480 481 482 483 484 485
        # delete table init op
        if self.has_distributed_lookup_table:
            trainer_table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
                    trainer_table_param_init_op.append(op)
            delete_ops(self.startup_program.global_block(),
                       trainer_table_param_init_op)

486
        self.origin_program.__str__()
G
gongweibao 已提交
487

W
Wu Yi 已提交
488 489 490
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

491
        return self.origin_program
T
typhoonzero 已提交
492

W
Wu Yi 已提交
493
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
494 495 496 497
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
498
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
499
            eplist (list): A list of strings indicating
G
gongweibao 已提交
500 501 502 503

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
504
        startup_program = self.startup_program
G
gongweibao 已提交
505 506 507 508

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
509
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
530
                inputs={"X": []},
G
gongweibao 已提交
531 532 533 534 535 536
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
537 538
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
539 540 541
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
542
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
543 544 545 546 547
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
548
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
549
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
550 551
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
552
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
553
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
554 555 556 557 558 559 560 561 562 563
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
564 565 566 567 568 569 570 571
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
572 573
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
574
        Get parameter server side program.
575

Y
yi.wu 已提交
576 577
        Args:
            endpoint (str): current parameter server endpoint.
578

Y
yi.wu 已提交
579 580
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
581
        """
Y
yi.wu 已提交
582 583 584 585
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
586 587 588
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
589 590
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
591
        pserver_program.random_seed = self.origin_program.random_seed
592
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
593 594 595 596 597 598 599 600
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
601 602 603 604 605
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
606 607 608 609 610 611 612 613 614
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
615
            if self.sync_mode and self.trainer_num > 1:
616
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
617 618 619 620 621 622 623 624 625
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
626

Q
qiaolongfei 已提交
627
        # step 3
628
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
629 630 631
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
632
        # step 3.2
T
typhoonzero 已提交
633 634 635 636
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
637 638
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
639
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
640
        # step 3.3
T
typhoonzero 已提交
641
        # Iterate through the ops, and if an op and the optimize ops
642
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
643
        # append it into the sub program.
T
typhoonzero 已提交
644 645 646

        global_ops = []

Y
wip  
yi.wu 已提交
647 648
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
649
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
650
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
651
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
652
            elif op not in lr_ops:
Q
Qiyang Min 已提交
653
                self._append_pserver_non_opt_ops(block, op)
654 655 656 657 658 659

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
660

Y
Yancey1989 已提交
661
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
662 663 664 665 666 667 668 669
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
670
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
671 672 673

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
674
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
675 676

            # clone ops
Y
Yancey1989 已提交
677 678
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
679
                # clone sub_block of op
Y
Yancey1989 已提交
680
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
681 682

            # reset the block of op
W
Wu Yi 已提交
683
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
684

685
        # append lr decay ops to the child block if exists
686
        lr_ops = self._get_lr_ops()
687 688
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
689
        if len(lr_ops) > 0:
W
Wu Yi 已提交
690
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
691
                pserver_program.num_blocks - 1)
692
            optimize_blocks.append(lr_decay_block)
693
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
694
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
695
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
696 697
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
698

T
typhoonzero 已提交
699
        # append op to the current block
Q
qiaolongfei 已提交
700
        grad_to_block_id = []
Q
qiaolongfei 已提交
701
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
702
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
703
            per_opt_block = pserver_program._create_block(pre_block_idx)
704
            optimize_blocks.append(per_opt_block)
705
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
706
            # append grad merging ops before clip and weight decay
707 708
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
709
            for _, op in enumerate(self.optimize_ops):
710 711 712 713 714
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
715 716 717
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
718 719 720 721 722 723 724 725 726 727 728 729
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
                        op not in global_ops:
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
730

W
Wu Yi 已提交
731 732
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
733
        # append global ops
734
        if global_ops:
W
Wu Yi 已提交
735
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
736
                pserver_program.num_blocks - 1)
737
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
738
            for glb_op in global_ops:
X
Xi Chen 已提交
739
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
740
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
741

742
        # process distributed lookup_table
Q
qiaolongfei 已提交
743
        prefetch_var_name_to_block_id = []
744 745
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
746
            table_opt_block = self._create_table_optimize_block(
747
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
748
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
749
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
750
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
751 752
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
753

T
tangwei12 已提交
754
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
755 756
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
757

758
        attrs = {
759
            "optimize_blocks": optimize_blocks,
760 761 762
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
763
            "grad_to_block_id": grad_to_block_id,
764
        }
T
tangwei12 已提交
765 766

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
767
            attrs['checkpint_block_id'] = checkpoint_block_id
768

T
tangwei12 已提交
769 770 771 772
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
773 774 775 776 777
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
778
            attrs=attrs)
779

T
tangwei12 已提交
780
        # add distributed attrs
T
tangwei12 已提交
781
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
782
            endpoint)
783

W
Wu Yi 已提交
784
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
785 786
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
787 788
        return pserver_program

W
Wu Yi 已提交
789 790 791 792 793 794
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
795

W
Wu Yi 已提交
796 797 798 799
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
800 801
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
802 803
        return pserver_prog, pserver_startup

804 805
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
806
                            pserver_program=None,
807
                            startup_program=None):
T
typhoonzero 已提交
808
        """
W
Wu Yi 已提交
809 810
        **Deprecated**

T
typhoonzero 已提交
811 812 813
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
814 815 816

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
817 818
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
819
                when initalizing
820

Y
yi.wu 已提交
821 822
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
823
        """
824 825 826
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
827
        if pserver_program != None:
828 829 830
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
831
        if startup_program != None:
832 833 834
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
835

T
typhoonzero 已提交
836
        s_prog = Program()
W
Wu Yi 已提交
837
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
838
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
839 840 841 842 843 844 845 846 847 848 849
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
850
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
851
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
852
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
853 854 855 856
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
857
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
858 859
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
860 861 862 863 864 865 866 867 868 869
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
870 871

            if op_on_pserver:
872 873 874
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
875 876 877
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
878
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
879 880 881 882
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
883
                    attrs=op.all_attrs())
884 885

        # add slice vars
T
tangwei12 已提交
886
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
887

T
typhoonzero 已提交
888 889
        return s_prog

T
tangwei12 已提交
890 891 892
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
893
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
894
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
895
            if not block_name:
896 897
                continue

T
tangwei12 已提交
898
            block_idx = int(block_name.split(block_suffix)[1])
899 900 901 902 903 904
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
905
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
906

T
tangwei12 已提交
907
        return slice_vars_and_attrs
908

909 910
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
911 912 913 914 915 916 917 918 919
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
920
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
972
    def _init_splited_vars(self):
Y
yi.wu 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
996
        if self.config.slice_var_up:
Y
yi.wu 已提交
997 998
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
999 1000 1001
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1002
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1003 1004
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1005 1006 1007
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1008 1009 1010 1011
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1012 1013
        assert (len(grad_blocks) == len(param_blocks))

1014
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1015 1016
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1017
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1018 1019 1020 1021
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1022
        # dict(grad_splited_var -> param_splited_var)
1023
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1024 1025 1026
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1027
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1028
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1029 1030

        # create mapping of endpoint -> split var to create pserver side program
1031
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1041
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1042 1043
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1044
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
1054 1055 1056 1057 1058 1059 1060 1061 1062

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

1063
                    lookup_table_op_index = list(all_ops).index(op)
1064 1065 1066
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1067
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
1068
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1069 1070 1071 1072 1073 1074
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
1075
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1076 1077 1078 1079
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
1080 1081

                    # insert split_ids_op
W
Wu Yi 已提交
1082
                    program.global_block()._insert_op(
1083
                        index=lookup_table_op_index,
1084 1085 1086 1087 1088 1089 1090
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
1091
                        outputs={"Out": prefetch_input_vars})
1092 1093

                    # insert prefetch_op
W
Wu Yi 已提交
1094
                    program.global_block()._insert_op(
1095
                        index=lookup_table_op_index + 1,
1096
                        type="prefetch",
Q
qiaolongfei 已提交
1097 1098
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
1099
                        attrs={
1100
                            "epmap": pserver_endpoints,
1101 1102 1103
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1104
                        })
1105 1106

                    # insert concat_op
W
Wu Yi 已提交
1107
                    program.global_block()._insert_op(
1108 1109 1110 1111 1112 1113 1114
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1115
                            'X': prefetch_output_vars
1116
                        },
1117 1118 1119 1120 1121
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1122
                        })
1123 1124

                    # delete lookup_table_op
1125
                    delete_ops(program.global_block(), [op])
1126 1127 1128
                    # break for loop
                    break

Y
Yancey1989 已提交
1129
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1130
        # 2. add split_ids_op and send_op to send gradient to pservers
1131

1132 1133
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1134
        table_grad_name = grad_var_name(self.table_name)
1135 1136 1137 1138
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1139
                program.global_block()._insert_op(
1140 1141 1142 1143 1144
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1145
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1146
                program.global_block()._insert_op(
1147
                    index=op_index + 2,
1148
                    type="send",
1149
                    inputs={'X': self.trainer_side_table_grad_list},
1150 1151 1152 1153 1154
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1155
                    attrs={
1156
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1157
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1158 1159 1160 1161 1162
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1163
                    })
1164 1165 1166 1167 1168 1169
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1170 1171
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
W
Wu Yi 已提交
1172
            prefetch_block = pserver_program._create_block(optimize_block.idx)
Q
qiaolongfei 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1198 1199

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1200
                                     pre_block_idx, grad_to_block_id):
1201
        # STEP: create table optimize block
1202
        table_opt_block = pserver_program._create_block(pre_block_idx)
1203
        # create table param and grad var in pserver program
1204 1205
        # create table optimize block in pserver program
        table_opt_op = [
1206 1207
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1208 1209
        ][0]

Y
Yancey1989 已提交
1210 1211
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1212

T
tangwei12 已提交
1213
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1214 1215
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1216 1217 1218
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1219 1220
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1221
            shape=table_shape,
Y
Yancey1989 已提交
1222 1223 1224
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1225

1226 1227
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1228
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1229
            self.origin_program.global_block().vars[grad_var_name(
1230
                self.table_name)])
1231

1232 1233 1234
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1235

1236 1237 1238
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1239
            pserver_side_table_grad_list = [
1240 1241 1242 1243 1244 1245 1246 1247 1248
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1249
            # append sum op for pserver_side_table_grad_list
1250 1251
            table_opt_block.append_op(
                type="sum",
1252
                inputs={"X": pserver_side_table_grad_list},
1253 1254
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1255 1256
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1257
            origin_grad_name = grad_var.name
1258 1259
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1260 1261
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1262
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1263
            grad_var = pserver_program.global_block()._rename_var(
1264
                origin_grad_name, splited_grad_name)
1265 1266 1267 1268 1269 1270 1271

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1272
        # only support sgd now
1273 1274 1275 1276
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1277
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1278

1279 1280 1281
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1282 1283
        return table_opt_block

T
tangwei12 已提交
1284 1285 1286 1287 1288 1289
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1290
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1291
            name="kLookupTablePath",
T
tangwei12 已提交
1292 1293
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1294

W
Wu Yi 已提交
1295
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1296
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1297 1298 1299 1300
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1301
            attrs={'file_path': "none"})
T
tangwei12 已提交
1302 1303 1304

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1305 1306 1307 1308 1309
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1310
        Create vars for each split.
T
typhoonzero 已提交
1311 1312
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1313 1314 1315 1316
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1317
        Returns:
1318
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1319
                from original var name to each var split.
T
typhoonzero 已提交
1320
        """
1321 1322

        # varname->[(block_id, current_block_size)]
1323
        block_map = collections.OrderedDict()
1324

1325
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1326 1327
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1328
            if varname not in block_map:
T
typhoonzero 已提交
1329
                block_map[varname] = []
1330
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1331

M
minqiyang 已提交
1332
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1333
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1334
            if len(splited) == 1:
1335
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1336
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1337
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1338
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1339 1340 1341 1342 1343
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1344
                continue
T
typhoonzero 已提交
1345
            var_mapping[varname] = []
T
typhoonzero 已提交
1346 1347 1348 1349
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1350

T
typhoonzero 已提交
1351
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1352
                size = block[1]
M
minqiyang 已提交
1353
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1354 1355 1356
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1357
                new_var_name = ""
1358
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1359
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1360
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1361 1362
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1363
                                   (varname, i)
T
typhoonzero 已提交
1364
                var = program.global_block().create_var(
T
typhoonzero 已提交
1365 1366
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1367
                    dtype=orig_var.dtype,
1368
                    type=orig_var.type,
T
typhoonzero 已提交
1369
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1370
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1371
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1372
        return var_mapping
T
done  
typhoonzero 已提交
1373

W
Wu Yi 已提交
1374
    def _create_splited_vars(self, source_var, block, tag):
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1385 1386 1387 1388 1389 1390
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1391
            persistable=persistable)
T
done  
typhoonzero 已提交
1392

Y
Yancey1989 已提交
1393
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1394 1395 1396 1397
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1398
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1399 1400 1401 1402
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1403 1404 1405 1406
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1407 1408 1409 1410
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1411
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1412 1413 1414 1415
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1416 1417 1418 1419
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1420 1421 1422
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1423

T
typhoonzero 已提交
1424 1425 1426 1427
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1428
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1444 1445
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1446
                return param_shape
1447 1448 1449
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
T
typhoonzero 已提交
1450 1451 1452 1453
        elif op_type == "sgd":
            pass
        return orig_shape

1454 1455
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1456
        orig_var_name = ""
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1467
        else:
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1490
            return None
1491 1492 1493 1494
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1495
        else:
1496
            merged_var_name = orig_varname
1497 1498

        merged_var = pserver_block.vars[merged_var_name]
1499 1500 1501
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1502
            for i in range(self.trainer_num):
1503
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1504
                                   (merged_var_name, i)
1505 1506 1507 1508
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1509 1510
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1511 1512 1513 1514 1515
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1516
        return merged_var
T
typhoonzero 已提交
1517

1518
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1519
                            grad_to_block_id, origin_program, merged_var):
1520
        program = optimize_block.program
T
typhoonzero 已提交
1521
        pserver_block = program.global_block()
1522
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1533
        for key in opt_op.input_names:
T
typhoonzero 已提交
1534 1535 1536
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1537
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1538 1539
                if not param_block:
                    return
T
typhoonzero 已提交
1540
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1541
                    name=param_block.name,
T
typhoonzero 已提交
1542
                    persistable=True,
T
typhoonzero 已提交
1543 1544 1545
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1546
            elif key == "LearningRate":
1547
                # learning rate variable has already be created by non-optimize op,
1548
                # don't create it once again.
1549
                lr_varname = opt_op.input(key)[0]
1550
                if lr_varname in pserver_block.vars:
1551 1552 1553 1554 1555 1556 1557 1558 1559
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1560

T
typhoonzero 已提交
1561
        for key in opt_op.input_names:
1562
            new_shape = None
W
Wu Yi 已提交
1563
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1564
                continue
1565
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1566 1567 1568 1569
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1570
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1571 1572 1573 1574 1575
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1576

1577
        # change output's ParamOut variable
1578 1579
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1580
        outputs["ParamOut"] = new_inputs["Param"]
1581
        optimize_block.append_op(
T
typhoonzero 已提交
1582 1583
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1584
            outputs=outputs,
G
gongweibao 已提交
1585
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1586

1587 1588
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1589
        for _, g in six.iteritems(var_dict):
1590 1591 1592 1593 1594 1595
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1596 1597 1598
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1599
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1600 1601 1602 1603
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1604
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1605 1606 1607

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1608
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1609 1610 1611 1612
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1613
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1614

Y
Yancey1989 已提交
1615
        return block.append_op(
G
gongweibao 已提交
1616
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1617 1618

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1619
        program = optimize_block.program
1620
        # Append the ops for parameters that do not need to be optimized/updated
1621 1622
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1623
        for key, varlist in six.iteritems(inputs):
1624 1625
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1626
            for var in varlist:
1627 1628 1629 1630 1631 1632
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1633
                elif var.name not in program.global_block().vars:
1634
                    program.global_block().create_var(
T
typhoonzero 已提交
1635 1636 1637 1638 1639
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1640 1641
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1642
        for key, varlist in six.iteritems(outputs):
1643 1644 1645
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1646 1647 1648 1649
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1650
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1651
                    program.global_block()._clone_variable(var)
1652

Y
Yancey1989 已提交
1653
        return optimize_block.append_op(
T
typhoonzero 已提交
1654
            type=opt_op.type,
T
typhoonzero 已提交
1655 1656
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1657
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1658

1659 1660 1661 1662
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1663
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1664
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1665 1666 1667 1668 1669 1670
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1671 1672
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1673 1674 1675 1676 1677 1678
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1679
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1680
        if "Param" in op.input_names and \
T
tangwei12 已提交
1681
                "LearningRate" in op.input_names:
1682 1683 1684 1685 1686 1687 1688
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1689
        if op.input("Param")[0] in param_names:
1690 1691 1692
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1693
                param = op.input("Param")[0]
T
typhoonzero 已提交
1694
                if same_or_split_var(n, param) and n != param:
1695 1696 1697
                    return True
            return False

T
typhoonzero 已提交
1698
    def _get_input_map_from_op(self, varmap, op):
1699
        """Returns a dict from op input name to the vars in varmap."""
1700
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1712
        """Returns a dict from op output name to the vars in varmap."""
1713
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1723 1724

    def _get_lr_ops(self):
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
            if int(op.attr(RPC_OP_ROLE_ATTR_NAME)) == int(
                    LR_SCHED_OP_ROLE_ATTR_VALUE):
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1735 1736 1737 1738
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1739
            if self._is_optimizer_op(op):
1740 1741 1742 1743
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1744
        block = self.origin_program.global_block()
1745 1746 1747 1748 1749
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1750

1751 1752 1753 1754 1755
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1756
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1757 1758 1759 1760 1761 1762
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1763 1764
                    # we only need to append op for once
                    break
1765
        return lr_ops
Y
Yancey1989 已提交
1766

W
Wu Yi 已提交
1767 1768 1769 1770 1771
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1772 1773
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1774 1775 1776
            return True
        return False

Y
Yancey1989 已提交
1777
    def _get_optimize_pass(self):
1778
        """
1779
        Get optimizer operators, parameters and gradients from origin_program
1780 1781 1782 1783
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1784 1785 1786
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1787 1788
        # tmp set to dedup
        optimize_params = set()
1789
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1790
        for op in block.ops:
W
Wu Yi 已提交
1791
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1792
                opt_ops.append(op)
1793 1794 1795 1796 1797 1798
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1799 1800
                        params_grads.append([
                            origin_var_dict[param_name],
1801
                            origin_var_dict[grad_name]
1802
                        ])
Y
Yancey1989 已提交
1803 1804 1805
            else:
                pass
        return opt_ops, params_grads