operator.h 24.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
30
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
34
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/scope.h"
36
#include "paddle/fluid/framework/selected_rows_utils.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/tensor.h"
38
#include "paddle/fluid/framework/unused_var_check.h"
39
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/platform/device_context.h"
41

42 43 44
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
45
#include "paddle/utils/flat_hash_map.h"
46

W
wanghuancoder 已提交
47 48 49 50 51 52 53 54 55
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

56 57 58 59
namespace phi {
class KernelContext;
}

Q
Qiao Longfei 已提交
60 61
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
62 63 64
namespace paddle {
namespace framework {

65
/// If a variable is a empty variable, that name will be used.
66
constexpr char kEmptyVarName[] = "@EMPTY@";
67 68 69

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
70
constexpr char kTempVarName[] = "@TEMP@";
71 72

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
73 74
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
75
constexpr char kGradVarSuffix[] = "@GRAD";
76

M
minqiyang 已提交
77 78
constexpr size_t kGradVarSuffixSize = 5U;

79
/// Variables with this suffix are supposed to be filled up with zeros.
80
constexpr char kZeroVarSuffix[] = "@ZERO";
81

C
chengduo 已提交
82 83 84
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
85 86 87 88 89 90 91 92
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
93 94 95 96 97 98 99 100 101
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
102
// define some kernel priority
103
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
104 105
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

106
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
107 108 109 110 111
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
112 113
}

M
minqiyang 已提交
114
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
115
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
116 117 118 119 120
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
121 122
}

123
inline bool VarIsTensor(const Variable& var) {
124
  return var.IsType<LoDTensor>() || var.IsType<phi::SelectedRows>();
125 126
}

C
chengduo 已提交
127 128
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
129

130
class ExecutionContext;
W
wanghuancoder 已提交
131
class OperatorBase;
132

X
Xin Pan 已提交
133 134
class RuntimeContext {
 public:
X
Xin Pan 已提交
135
  RuntimeContext(const VariableNameMap& innames,
136 137
                 const VariableNameMap& outnames,
                 const Scope& scope);
X
Xin Pan 已提交
138

X
Xin Pan 已提交
139 140 141 142
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
143 144 145 146
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
147
/**
X
Xin Pan 已提交
148
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
149 150 151 152 153 154
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
155 156 157 158
  OperatorBase(const std::string& type,
               const VariableNameMap& inputs,
               const VariableNameMap& outputs,
               const AttributeMap& attrs);
159

Q
Qiao Longfei 已提交
160 161
  virtual ~OperatorBase() {}

162
  /// Executor will call this interface function to Run an op.
163 164
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
165

T
typhoonzero 已提交
166 167 168
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

169
  /// if scope is not null, also show dimensions of arguments
170
  virtual std::string DebugStringEx(const ScopeBase* scope) const;
171
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
172

173
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
174
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
175
  virtual bool SupportMLU() const { return false; }
176
  virtual bool SupportXPU() const { return false; }
177

178 179
  const std::string& Type() const { return type_; }

180 181 182
  bool HasAttr(const std::string& name) const {
    return attrs_.count(name) || runtime_attrs_.count(name);
  }
183 184
  template <typename T>
  inline const T& Attr(const std::string& name) const {
185
    PADDLE_ENFORCE_NE(
186 187
        attrs_.find(name),
        attrs_.end(),
188
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
R
Ruibiao Chen 已提交
189
    return PADDLE_GET_CONST(T, attrs_.at(name));
190
  }
191 192
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
193 194
        HasAttr(name),
        true,
195 196 197 198 199
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
200
  const AttributeMap& Attrs() const { return attrs_; }
201 202 203 204
  const AttributeMap& RuntimeAttrs() const { return runtime_attrs_; }
  void SetRuntimeAttributeMap(const AttributeMap& runtime_attrs) {
    runtime_attrs_ = runtime_attrs;
  }
D
dongzhihong 已提交
205

Y
Yu Yang 已提交
206 207
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
208 209
  VariableNameMap& Inputs() { return inputs_; }
  VariableNameMap& Outputs() { return outputs_; }
210

S
sneaxiy 已提交
211
  const OpInfo& Info() const {
212
    PADDLE_ENFORCE_NOT_NULL(
213 214 215
        info_,
        platform::errors::NotFound("OpInfo of operator (%s) is not found.",
                                   type_));
S
sneaxiy 已提交
216 217 218
    return *info_;
  }

219
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
220
  //! Get a input with argument's name described in `op_proto`
221
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
222
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
223
  const std::vector<std::string>& Inputs(const std::string& name) const;
224
  //! Get all inputs variable names
Q
qijun 已提交
225 226
  std::vector<std::string> InputVars() const;

227
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
228
  //! Get a output with argument's name described in `op_proto`
229
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
230 231
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
232
  const std::vector<std::string>& Outputs(const std::string& name) const;
233
  //! Get all outputs variable names
Y
Yu Yang 已提交
234
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
235

236
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
237

B
baojun-nervana 已提交
238
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
239 240
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
241

Z
Zhang Ting 已提交
242 243 244 245 246
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
247
 protected:
Q
Qiao Longfei 已提交
248
  std::string type_;
D
dongzhihong 已提交
249
  // NOTE: in case of OpGrad, inputs_ contains:
250
  // I (Inputs)
D
dongzhihong 已提交
251 252
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
253
  VariableNameMap inputs_;
Y
Yu Yang 已提交
254

D
dongzhihong 已提交
255 256
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
257
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
258
  AttributeMap attrs_;
259 260 261 262 263 264
  // NOTE: runtime_attrs_ contains the attributes which used for dispatching
  // kernel (use_mkldnn, use_cudnn, ...) or passing additional configuration
  // for special heterogeneous kernel (workspace_size_MB, ...).
  // The attributes in runtime_attrs_ are setted by framework (such as PASS),
  // and not in the python api.
  AttributeMap runtime_attrs_;
S
sneaxiy 已提交
265 266 267 268

  // OpInfo
  const OpInfo* info_;

269 270
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
271 272 273 274

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
275 276
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
277 278
};

279
class ExecutionContext {
Y
Yan Chunwei 已提交
280
 public:
281 282
  ExecutionContext(const OperatorBase& op,
                   const Scope& scope,
X
Xin Pan 已提交
283
                   const platform::DeviceContext& device_context,
284 285
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
286
  virtual ~ExecutionContext() {}
287

H
hong 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
308 309 310

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
311
  template <typename T>
Y
Yu Yang 已提交
312
  inline const T& Attr(const std::string& name) const {
R
Ruibiao Chen 已提交
313
    return PADDLE_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
314 315
  }

H
hong 已提交
316
  virtual const Attribute& GetAttr(const std::string& name) const {
317 318 319 320 321 322
    auto iter = op_.Attrs().find(name);
    if (iter == op_.Attrs().end()) {
      return op_.RuntimeAttrs().at(name);
    } else {
      return iter->second;
    }
H
hong 已提交
323
  }
324

H
hong 已提交
325
  virtual bool HasInput(const std::string& name) const;
326

327 328
  virtual bool HasInputs(const std::string& name) const;

H
hong 已提交
329
  virtual bool HasOutput(const std::string& name) const;
330

H
hong 已提交
331
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
332
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
333 334
  }

H
hong 已提交
335
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
336
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
337 338
  }

H
hong 已提交
339
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
340

H
hong 已提交
341
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
342

H
hong 已提交
343
  virtual const std::vector<Variable*> MultiInputVar(
344
      const std::string& name) const {
345 346
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
347 348 349 350
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
351
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
352 353
  }

H
hong 已提交
354
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
355 356 357 358 359 360 361
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

C
Chen Weihang 已提交
362 363
  virtual paddle::small_vector<const std::string*> InNameList() const {
    paddle::small_vector<const std::string*> vec_temp;
H
hong 已提交
364 365 366
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
367
      vec_temp.push_back(&input.first);
H
hong 已提交
368 369 370 371 372
    }

    return vec_temp;
  }

373 374
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
375
    auto* var = InputVar(name);
376
    return var == nullptr ? nullptr : &var->Get<T>();
377 378 379 380
  }

  template <typename T>
  T* Output(const std::string& name) const {
381
    auto var = OutputVar(name);
382
    return var == nullptr ? nullptr : var->GetMutable<T>();
383 384 385 386
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
387 388
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
389 390
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
391 392 393 394
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
395 396 397
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
H
hong 已提交
398
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
399 400 401 402 403 404 405
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
406 407 408
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
409 410
      return {};
    }
H
hong 已提交
411

X
Xin Pan 已提交
412 413
    std::vector<T*> res;
    res.reserve(vars.size());
414 415 416
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(res),
X
Xin Pan 已提交
417 418 419
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
420

X
Xin Pan 已提交
421 422 423
    return res;
  }

424
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
425

Q
QI JUN 已提交
426 427 428 429 430
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

431
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
432
    return device_context_;
Q
qijun 已提交
433
  }
Q
qijun 已提交
434

435
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
436
  const inline phi::GPUContext& cuda_device_context() const {
437 438
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()),
                      true,
439 440
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
L
Leo Chen 已提交
441
    return *reinterpret_cast<const phi::GPUContext*>(&device_context_);
Q
QI JUN 已提交
442 443 444
  }
#endif

X
Xin Pan 已提交
445 446 447
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
448 449 450 451
    phi::DenseTensor tmp;
    tmp.Resize(dim);
    dev_ctx.template Alloc<T>(&tmp);
    return tmp;
X
Xin Pan 已提交
452 453
  }

H
hong 已提交
454 455 456
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
457
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
458

459
 private:
460 461
  const OperatorBase& op_;
  const Scope& scope_;
462
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
463
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
464 465
};

466
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
467
class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
468 469 470 471 472
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
473
    return ctx_.HasInputs(name);
474 475 476 477 478 479
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

480 481 482 483
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

484 485 486
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
487 488 489
  }

  size_t InputSize(const std::string& name) const override {
490
    return ctx_.MultiInputVar(name).size();
491 492 493
  }

  size_t OutputSize(const std::string& name) const override {
494
    return ctx_.MultiOutputVar(name).size();
495 496 497
  }

  bool IsDenseTensorInput(const std::string& name) const override {
498 499 500 501 502
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::DenseTensor>();
  }

  bool IsDenseTensorInputs(const std::string& name) const override {
503 504 505 506
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
507 508 509
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
510 511
    const auto* var = ctx_.InputVar(name);
    return var->IsType<phi::SelectedRows>();
512 513
  }

514
  bool IsDenseTensorVectorInput(const std::string& name) const override {
515 516 517 518
    auto vars = ctx_.MultiInputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<framework::LoDTensorArray>();
    });
519 520
  }

521
  bool IsDenseTensorOutput(const std::string& name) const override {
522 523 524 525
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::DenseTensor>();
    });
526 527 528
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
529 530 531 532
    auto vars = ctx_.MultiOutputVar(name);
    return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
      return var->IsType<phi::SelectedRows>();
    });
533 534
  }

535 536
  bool IsForInferShape() const override { return false; }

537 538 539 540
 private:
  const ExecutionContext& ctx_;
};

541 542 543 544 545 546 547 548
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
549
class OpKernelBase {
Q
qijun 已提交
550
 public:
Q
qijun 已提交
551
  /**
552
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
553 554
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
555
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
556 557
   */

558
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
559

Y
Yu Yang 已提交
560 561 562 563 564 565 566
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
567 568
};

Y
Yu Yang 已提交
569 570
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
571
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
572
  using OpKernelMap =
Y
yuyang18 已提交
573
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
574

575 576 577 578
  OperatorWithKernel(const std::string& type,
                     const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs)
Y
Yu Yang 已提交
579 580
      : OperatorBase(type, inputs, outputs, attrs) {}

C
chentianyu03 已提交
581
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
582
  AllOpKernels() {
C
chentianyu03 已提交
583
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
584
    return g_all_op_kernels;
Y
Yu Yang 已提交
585
  }
Y
Yan Chunwei 已提交
586

587 588 589
  bool SupportGPU() const override;

  bool SupportNPU() const override;
590

F
fwenguang 已提交
591
  bool SupportMLU() const override {
592
    // TODO(zhiqiu): support phi if needed?
F
fwenguang 已提交
593
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
594 595
    return std::any_of(op_kernels.begin(),
                       op_kernels.end(),
F
fwenguang 已提交
596 597 598 599
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
600 601 602

  bool SupportXPU() const override;

603
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
604

605 606
  bool SupportsKernelType(const OpKernelType& kernel_type) const;

607 608
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
609

610
  virtual void InferShape(InferShapeContext* ctx) const;
Y
Yu Yang 已提交
611

612 613
  void RuntimeInferShape(const Scope& scope,
                         const platform::Place& place,
X
Xin Pan 已提交
614
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
615

616 617 618
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

619
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
620 621
      const ExecutionContext& ctx,
      const std::string& name1,
622 623
      const std::string& name2) const;

624
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
625

626 627
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
628
  virtual OpKernelType GetKernelTypeForVar(
629 630
      const std::string& var_name,
      const Tensor& tensor,
631
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
632

633 634
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
635 636 637
    return kernel_type_->place_;
  }

638
  /* member functions for adapting to phi lib */
639
  /** In the Tensor calculation library, the new Kernel adopts a clearer and
640 641 642 643 644 645
   * more streamlined design. The arguments of the Kernel and the input and
   * output arguments registered in the original OpMaker do not match in some
   * cases, so we use map to record the arguments required by the kernel.
   * When selecting Kernel during Op execution, select the arguments of the
   * original Op according to the GetExpectedPhiKernelArgs returned arguments.
   */
646
  phi::KernelSignature GetExpectedPhiKernelArgs(
647 648
      const ExecutionContext& ctx) const;

649 650
  /* member functions for adapting to phi lib */
  phi::KernelKey ChoosePhiKernel(const ExecutionContext& ctx) const;
651

652
  void ChooseKernel(const ExecutionContext& ctx) const;
653

654 655
  void BuildPhiKernelContext(const RuntimeContext& ctx,
                             platform::DeviceContext* dev_ctx,
656
                             phi::KernelContext* phi_kernel_context) const;
657

658
  phi::KernelSignature* PhiKernelSignature() const {
659
    return kernel_signature_.get();
660 661
  }

662
  phi::Kernel* PhiKernel() const { return phi_kernel_.get(); }
663

664
  void ResetPhiKernel(phi::Kernel* kernel) const {
665
    return phi_kernel_.reset(kernel);
666 667
  }

668
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }
669
  const OpKernelFunc* kernel_func() const { return kernel_func_.get(); }
670

671 672 673 674
  void ResetKernelType(OpKernelType* kernel_type) {
    kernel_type_.reset(kernel_type);
  }

Y
Yu Yang 已提交
675
 private:
676
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
677 678
  void RunImpl(const Scope& scope,
               const platform::Place& place,
L
luotao1 已提交
679
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
680 681

  /**
T
tianshuo78520a 已提交
682
   * Transfer data from scope to a transferred scope. If there is no data need
683
   * to be transferred, it returns nullptr.
Y
yuyang18 已提交
684
   *
685
   * transfered_inplace_vars is a output vector.
Y
yuyang18 已提交
686
   */
X
Xin Pan 已提交
687 688 689 690
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
691 692 693 694

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
695

696 697
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

698 699 700
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

701 702 703 704 705
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
706 707
  void ParseInputDataType(const Variable* vars,
                          const std::string& name,
708
                          proto::VarType::Type* data_type) const;
709 710 711
  void ParseMultiInputDataType(const std::vector<Variable*>& vars,
                               const std::string& name,
                               proto::VarType::Type* data_type) const;
712 713 714 715
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

716
 protected:
L
Liu Yiqun 已提交
717 718
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
719 720
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
721
  mutable bool need_prepare_data_ = true;
722
  mutable bool need_prepare_phi_data_ = false;
723 724
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
725
  mutable std::mutex cache_update_mutex_;
726
  mutable bool enable_cache_transfer_scope_ = false;
727
  // NOTE(chenweihang): Similar op members are used to adapt to
728
  // new phi kernel, if there is a better design in the future,
729
  // we may polish the implementation here
730
  mutable bool run_phi_kernel_ = false;
L
Liu-xiandong 已提交
731
  mutable bool run_kp_kernel = false;
732
  mutable std::unique_ptr<phi::KernelSignature> kernel_signature_;
733
  mutable std::unique_ptr<phi::Kernel> phi_kernel_;
734
  mutable std::unique_ptr<phi::ArgumentMappingFn> arg_map_fn_;
735 736 737

  struct CacheImpl;
  mutable CacheImpl* impl_{nullptr};
Q
Qiao Longfei 已提交
738 739
};

Y
Yu Yang 已提交
740 741
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
742 743
}  // namespace framework
}  // namespace paddle