operator.h 21.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
33
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
34 35 36
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
C
chentianyu03 已提交
41
#include "paddle/utils/flat_hash_map.h"
Q
Qiao Longfei 已提交
42

43
#include "paddle/pten/include/core.h"
44

W
wanghuancoder 已提交
45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

Q
Qiao Longfei 已提交
54 55
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
56 57 58
namespace paddle {
namespace framework {

59
/// If a variable is a empty variable, that name will be used.
60
constexpr char kEmptyVarName[] = "@EMPTY@";
61 62 63

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
64
constexpr char kTempVarName[] = "@TEMP@";
65 66

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
67 68
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
69
constexpr char kGradVarSuffix[] = "@GRAD";
70

M
minqiyang 已提交
71 72
constexpr size_t kGradVarSuffixSize = 5U;

73
/// Variables with this suffix are supposed to be filled up with zeros.
74
constexpr char kZeroVarSuffix[] = "@ZERO";
75

C
chengduo 已提交
76 77 78
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
79 80 81 82 83 84 85 86
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
87 88 89 90 91 92 93 94 95
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
96
// define some kernel priority
97
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
98 99
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

100
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
101 102 103 104 105
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
106 107
}

M
minqiyang 已提交
108
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
109
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
110 111 112 113 114
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
115 116
}

117 118 119 120
inline bool VarIsTensor(const Variable& var) {
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
}

C
chengduo 已提交
121 122
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
123

124
class ExecutionContext;
W
wanghuancoder 已提交
125
class OperatorBase;
126

X
Xin Pan 已提交
127 128
class RuntimeContext {
 public:
X
Xin Pan 已提交
129 130
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
131

X
Xin Pan 已提交
132 133 134 135
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
136 137 138 139
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
140
/**
X
Xin Pan 已提交
141
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
142 143 144 145 146 147
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
148 149
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
150

Q
Qiao Longfei 已提交
151 152
  virtual ~OperatorBase() {}

153
  /// Executor will call this interface function to Run an op.
154 155
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
156

T
typhoonzero 已提交
157 158 159
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

160
  /// if scope is not null, also show dimensions of arguments
161
  virtual std::string DebugStringEx(const ScopeBase* scope) const;
162
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
163

164
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
165
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
166
  virtual bool SupportMLU() const { return false; }
167

168 169
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
170
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
171 172
  template <typename T>
  inline const T& Attr(const std::string& name) const {
173 174 175
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
176
    return BOOST_GET_CONST(T, attrs_.at(name));
177
  }
178 179 180 181 182 183 184 185
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
186
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
187

Y
Yu Yang 已提交
188 189
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
190

S
sneaxiy 已提交
191
  const OpInfo& Info() const {
192 193 194
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
195 196 197
    return *info_;
  }

198
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
199
  //! Get a input with argument's name described in `op_proto`
200
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
201
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
202
  const std::vector<std::string>& Inputs(const std::string& name) const;
203
  //! Get all inputs variable names
Q
qijun 已提交
204 205
  std::vector<std::string> InputVars() const;

206
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
207
  //! Get a output with argument's name described in `op_proto`
208
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
209 210
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
211
  const std::vector<std::string>& Outputs(const std::string& name) const;
212
  //! Get all outputs variable names
Y
Yu Yang 已提交
213
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
214

215
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
216

B
baojun-nervana 已提交
217
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
218 219
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
220

Z
Zhang Ting 已提交
221 222 223 224 225
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
226
 protected:
Q
Qiao Longfei 已提交
227
  std::string type_;
D
dongzhihong 已提交
228
  // NOTE: in case of OpGrad, inputs_ contains:
229
  // I (Inputs)
D
dongzhihong 已提交
230 231
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
232
  VariableNameMap inputs_;
Y
Yu Yang 已提交
233

D
dongzhihong 已提交
234 235
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
236
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
237
  AttributeMap attrs_;
S
sneaxiy 已提交
238 239 240 241

  // OpInfo
  const OpInfo* info_;

242 243
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
244 245 246 247

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
248 249
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
250 251
};

252
class ExecutionContext {
Y
Yan Chunwei 已提交
253
 public:
254
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
255
                   const platform::DeviceContext& device_context,
256 257
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
258
  virtual ~ExecutionContext() {}
259

H
hong 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
280 281 282

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
283
  template <typename T>
Y
Yu Yang 已提交
284
  inline const T& Attr(const std::string& name) const {
285
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
286 287
  }

H
hong 已提交
288 289 290
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
291

H
hong 已提交
292
  virtual bool HasInput(const std::string& name) const;
293

H
hong 已提交
294
  virtual bool HasOutput(const std::string& name) const;
295

H
hong 已提交
296
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
297
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
298 299
  }

H
hong 已提交
300
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
301
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
302 303
  }

H
hong 已提交
304
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
305

H
hong 已提交
306
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
307

H
hong 已提交
308
  virtual const std::vector<Variable*> MultiInputVar(
309
      const std::string& name) const {
310 311
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
312 313 314 315
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
316
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
317 318
  }

H
hong 已提交
319
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
320 321 322 323 324 325 326
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
327 328 329 330 331 332 333 334 335 336 337
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

338 339
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
340
    auto* var = InputVar(name);
341
    return var == nullptr ? nullptr : &var->Get<T>();
342 343 344 345
  }

  template <typename T>
  T* Output(const std::string& name) const {
346
    auto var = OutputVar(name);
347
    return var == nullptr ? nullptr : var->GetMutable<T>();
348 349 350 351
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
352 353
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
354 355
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
356 357 358 359 360
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
361
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
362 363 364 365 366 367 368
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
369 370 371
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
372 373
      return {};
    }
H
hong 已提交
374

X
Xin Pan 已提交
375 376 377 378 379 380
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
381

X
Xin Pan 已提交
382 383 384
    return res;
  }

385
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
386

Q
QI JUN 已提交
387 388 389 390 391
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

392
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
393
    return device_context_;
Q
qijun 已提交
394
  }
Q
qijun 已提交
395

396
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
397
  const inline platform::CUDADeviceContext& cuda_device_context() const {
398 399 400
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
401 402 403 404 405
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
406 407 408
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
409
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
410 411 412 413 414
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

415 416 417 418 419 420
    PADDLE_ENFORCE_GE(
        allocation_ptr->size(), framework::product(dim) * sizeof(T),
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
            allocation_ptr->size(), framework::product(dim) * sizeof(T)));
X
Xin Pan 已提交
421 422 423 424 425 426 427 428

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
429 430 431
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
432
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
433

434
 private:
435 436
  const OperatorBase& op_;
  const Scope& scope_;
437
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
438
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
439 440
};

441 442 443 444 445 446 447 448 449 450 451 452 453 454
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
455
class OpKernelBase {
Q
qijun 已提交
456
 public:
Q
qijun 已提交
457
  /**
458
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
459 460
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
461
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
462 463
   */

464
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
465

Y
Yu Yang 已提交
466 467 468 469 470 471 472
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
473 474
};

Y
Yu Yang 已提交
475 476
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
477
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
478
  using OpKernelMap =
Y
yuyang18 已提交
479
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
480

Y
Yu Yang 已提交
481 482
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
483 484
      : OperatorBase(type, inputs, outputs, attrs) {}

C
chentianyu03 已提交
485
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
486
  AllOpKernels() {
C
chentianyu03 已提交
487
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
488
    return g_all_op_kernels;
Y
Yu Yang 已提交
489
  }
Y
Yan Chunwei 已提交
490

491 492 493 494 495
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

496
  bool SupportGPU() const override {
Y
Yu Yang 已提交
497 498 499 500 501
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
502
  }
B
Baibaifan 已提交
503 504 505 506 507 508 509
  bool SupportNPU() const override {
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_npu_place(kern_pair.first.place_);
                       });
  }
F
fwenguang 已提交
510 511 512 513 514 515 516
  bool SupportMLU() const override {
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
517
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
518

519 520
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
521

522
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
523

X
Xin Pan 已提交
524 525
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
526

527 528 529
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

530 531 532 533
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
      const ExecutionContext& ctx, const std::string& name1,
      const std::string& name2) const;

534
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
535

536 537
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
538 539 540
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
541

542 543
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
544 545 546
    return kernel_type_->place_;
  }

547 548 549 550 551 552 553 554 555 556 557
  /* member functions for adapting to pten lib */
  /** In the Tensor calculation library, the new Kernel adopts a clearer and
    * more streamlined design. The arguments of the Kernel and the input and
    * output arguments registered in the original OpMaker do not match in some
    * cases, so we use map to record the arguments required by the kernel.
    * When selecting Kernel during Op execution, select the arguments of the
    * original Op according to the GetExpectedPtenKernelArgs returned arguments.
    */
  virtual KernelSignature GetExpectedPtenKernelArgs(
      const ExecutionContext& ctx) const;

Y
Yu Yang 已提交
558
 private:
559
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
560 561
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
562 563

  /**
T
tianshuo78520a 已提交
564 565
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
566 567 568 569
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
570 571 572 573
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
574 575 576 577

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
578

579 580 581
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

  void ChooseKernel(const ExecutionContext& ctx) const;
L
Liu Yiqun 已提交
582

583 584 585
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

586 587 588 589 590
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
591 592 593
  void ParseInputDataType(const std::vector<Variable*>& vars,
                          const std::string& name,
                          proto::VarType::Type* data_type) const;
594 595 596 597
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

598 599 600
  /* member functions for adapting to pten lib */
  void ChoosePtenKernel(const ExecutionContext& ctx) const;

601 602
  void BuildPtenKernelContext(const RuntimeContext& ctx,
                              platform::DeviceContext* dev_ctx) const;
603

604 605
  void WriteBackToOutputs(RuntimeContext* ctx) const;

606
 protected:
L
Liu Yiqun 已提交
607 608
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
609 610
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
611
  mutable bool need_prepare_data_ = true;
612 613
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
614
  mutable std::mutex cache_update_mutex_;
615
  mutable bool enable_cache_transfer_scope_ = false;
616 617 618 619 620 621
  // NOTE(chenweihang): Similar op members are used to adapt to
  // new pten kernel, if there is a better design in the future,
  // we may polish the implementation here
  mutable bool run_pten_kernel_ = false;
  mutable std::unique_ptr<KernelSignature> pt_kernel_signature_;
  mutable std::unique_ptr<pten::Kernel> pt_kernel_;
622 623 624
  // In order to reduce the compatibility phase
  // performance overhead, temporarily cache KernelContext
  mutable std::unique_ptr<pten::KernelContext> pt_kernel_context_;
Q
Qiao Longfei 已提交
625 626
};

Y
Yu Yang 已提交
627 628
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
629 630
}  // namespace framework
}  // namespace paddle