test_imperative_deepcf.py 14.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import os
16
import random
X
Xin Pan 已提交
17
import sys
18 19 20 21
import unittest

import numpy as np
from test_imperative_base import new_program_scope
X
Xin Pan 已提交
22 23 24 25

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.dygraph.base import to_variable
28
from paddle.fluid.framework import _test_eager_guard
X
Xin Pan 已提交
29 30


31
class DMF(fluid.Layer):
32
    def __init__(self):
33
        super().__init__()
34 35
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
36 37 38 39 40 41 42 43

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
44 45 46 47 48 49 50
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
51 52 53
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
54 55 56 57 58 59 60
                    Linear(
                        256 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
61 62 63 64 65 66 67 68 69 70 71

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


72
class MLP(fluid.Layer):
73
    def __init__(self):
74
        super().__init__()
75 76
        self._user_latent = Linear(1000, 256)
        self._item_latent = Linear(100, 256)
X
Xin Pan 已提交
77 78 79 80 81 82
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
83 84 85 86 87 88 89
                    Linear(
                        256 * 2 if i == 0 else self._hid_sizes[i - 1],
                        self._hid_sizes[i],
                        act='relu',
                    ),
                )
            )
X
Xin Pan 已提交
90 91 92 93

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
94 95 96
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1
        )
X
Xin Pan 已提交
97 98 99 100 101
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


102
class DeepCF(fluid.Layer):
103
    def __init__(self, num_users, num_items, matrix):
104
        super().__init__()
X
Xin Pan 已提交
105 106 107
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
108 109 110
            attr=fluid.ParamAttr(trainable=False),
            shape=matrix.shape,
            dtype=matrix.dtype,
X
Xin Pan 已提交
111
            is_bias=False,
112 113
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix),
        )
114
        self._rating_matrix.stop_gradient = True
X
Xin Pan 已提交
115

116 117 118
        self._mlp = MLP()
        self._dmf = DMF()
        self._match_fc = Linear(128, 1, act='sigmoid')
X
Xin Pan 已提交
119 120

    def forward(self, users, items):
X
Xin Pan 已提交
121 122
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
123

124 125
        users_emb = paddle.gather(self._rating_matrix, users)
        items_emb = paddle.gather(
126
            paddle.transpose(self._rating_matrix, [1, 0]), items
127
        )
X
Xin Pan 已提交
128 129
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
130 131 132

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
133 134 135
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive], axis=len(mlp_predictive.shape) - 1
        )
X
Xin Pan 已提交
136 137 138 139
        prediction = self._match_fc(predictive)
        return prediction


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
class TestDygraphDeepCF(unittest.TestCase):
    def setUp(self):
        # Can use Amusic dataset as the DeepCF describes.
        self.data_path = os.environ.get('DATA_PATH', '')

        self.batch_size = int(os.environ.get('BATCH_SIZE', 128))
        self.num_batches = int(os.environ.get('NUM_BATCHES', 5))
        self.num_epoches = int(os.environ.get('NUM_EPOCHES', 1))

    def get_data(self):
        user_ids = []
        item_ids = []
        labels = []
        NUM_USERS = 100
        NUM_ITEMS = 1000
        matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

        for uid in range(NUM_USERS):
            for iid in range(NUM_ITEMS):
                label = float(random.randint(1, 6) == 1)
                user_ids.append(uid)
                item_ids.append(iid)
                labels.append(label)
                matrix[uid, iid] = label
        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
169 170 171 172 173 174 175 176
        return (
            np.expand_dims(users_np, -1),
            np.expand_dims(items_np, -1),
            np.expand_dims(labels_np, -1),
            NUM_USERS,
            NUM_ITEMS,
            matrix,
        )
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

    def load_data(self):
        sys.stderr.write('loading from %s\n' % self.data_path)
        likes = dict()
        num_users = -1
        num_items = -1
        with open(self.data_path, 'r') as f:
            for l in f.readlines():
                uid, iid, rating = [int(v) for v in l.split('\t')]
                num_users = max(num_users, uid + 1)
                num_items = max(num_items, iid + 1)
                if float(rating) > 0.0:
                    likes[(uid, iid)] = 1.0

        user_ids = []
        item_ids = []
        labels = []
        matrix = np.zeros([num_users, num_items], dtype=np.float32)
        for uid, iid in likes.keys():
X
Xin Pan 已提交
196 197
            user_ids.append(uid)
            item_ids.append(iid)
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
            labels.append(1.0)
            matrix[uid, iid] = 1.0

            negative = 0
            while negative < 3:
                nuid = random.randint(0, num_users - 1)
                niid = random.randint(0, num_items - 1)
                if (nuid, niid) not in likes:
                    negative += 1
                    user_ids.append(nuid)
                    item_ids.append(niid)
                    labels.append(0.0)

        indices = np.arange(len(user_ids))
        np.random.shuffle(indices)
        users_np = np.array(user_ids, dtype=np.int32)[indices]
        items_np = np.array(item_ids, dtype=np.int32)[indices]
        labels_np = np.array(labels, dtype=np.float32)[indices]
216 217 218 219 220 221 222 223
        return (
            np.expand_dims(users_np, -1),
            np.expand_dims(items_np, -1),
            np.expand_dims(labels_np, -1),
            num_users,
            num_items,
            matrix,
        )
224

X
Xin Pan 已提交
225
    def test_deefcf(self):
X
Xin Pan 已提交
226
        seed = 90
227
        if self.data_path:
228 229 230 231 232 233 234 235
            (
                users_np,
                items_np,
                labels_np,
                num_users,
                num_items,
                matrix,
            ) = self.load_data()
X
Xin Pan 已提交
236
        else:
237 238 239 240 241 242 243 244
            (
                users_np,
                items_np,
                labels_np,
                num_users,
                num_items,
                matrix,
            ) = self.get_data()
C
cnn 已提交
245
        paddle.seed(seed)
L
Leo Chen 已提交
246
        paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
247 248
        startup = fluid.Program()
        main = fluid.Program()
X
polish  
Xin Pan 已提交
249

X
Xin Pan 已提交
250 251
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
252 253
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
254 255
            labels = fluid.layers.data('labels', [1], dtype='float32')

256
            deepcf = DeepCF(num_users, num_items, matrix)
X
Xin Pan 已提交
257
            prediction = deepcf(users, items)
258
            loss = paddle.sum(fluid.layers.log_loss(prediction, labels))
X
Xin Pan 已提交
259 260 261
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

262 263 264 265 266
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
X
Xin Pan 已提交
267
            exe.run(startup)
268
            for e in range(self.num_epoches):
X
Xin Pan 已提交
269
                sys.stderr.write('epoch %d\n' % e)
270 271 272
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
273
                    if slice + self.batch_size >= users_np.shape[0]:
X
Xin Pan 已提交
274 275 276 277
                        break
                    static_loss = exe.run(
                        main,
                        feed={
278 279 280 281 282 283 284 285 286
                            users.name: users_np[
                                slice : slice + self.batch_size
                            ],
                            items.name: items_np[
                                slice : slice + self.batch_size
                            ],
                            labels.name: labels_np[
                                slice : slice + self.batch_size
                            ],
X
Xin Pan 已提交
287
                        },
288 289
                        fetch_list=[loss],
                    )[0]
X
Xin Pan 已提交
290
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
291

L
lujun 已提交
292
        with fluid.dygraph.guard():
C
cnn 已提交
293
            paddle.seed(seed)
L
Leo Chen 已提交
294
            paddle.framework.random._manual_program_seed(seed)
X
Xin Pan 已提交
295

296 297
            deepcf = DeepCF(num_users, num_items, matrix)
            adam = fluid.optimizer.AdamOptimizer(
298 299
                0.01, parameter_list=deepcf.parameters()
            )
300
            for e in range(self.num_epoches):
X
Xin Pan 已提交
301
                sys.stderr.write('epoch %d\n' % e)
302 303 304
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
305
                    if slice + self.batch_size >= users_np.shape[0]:
X
polish  
Xin Pan 已提交
306
                        break
X
Xin Pan 已提交
307
                    prediction = deepcf(
308 309 310
                        to_variable(users_np[slice : slice + self.batch_size]),
                        to_variable(items_np[slice : slice + self.batch_size]),
                    )
311
                    loss = paddle.sum(
312 313
                        fluid.layers.log_loss(
                            prediction,
314 315 316 317 318
                            to_variable(
                                labels_np[slice : slice + self.batch_size]
                            ),
                        )
                    )
L
lujun 已提交
319
                    loss.backward()
X
Xin Pan 已提交
320 321
                    adam.minimize(loss)
                    deepcf.clear_gradients()
322
                    dy_loss = loss.numpy()
X
polish  
Xin Pan 已提交
323
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
324

325
        with fluid.dygraph.guard():
C
cnn 已提交
326
            paddle.seed(seed)
L
Leo Chen 已提交
327
            paddle.framework.random._manual_program_seed(seed)
328

329 330
            deepcf2 = DeepCF(num_users, num_items, matrix)
            adam2 = fluid.optimizer.AdamOptimizer(
331 332
                0.01, parameter_list=deepcf2.parameters()
            )
333
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
334
            for e in range(self.num_epoches):
335
                sys.stderr.write('epoch %d\n' % e)
336 337 338
                for slice in range(
                    0, self.batch_size * self.num_batches, self.batch_size
                ):
339
                    if slice + self.batch_size >= users_np.shape[0]:
340 341
                        break
                    prediction2 = deepcf2(
342 343 344
                        to_variable(users_np[slice : slice + self.batch_size]),
                        to_variable(items_np[slice : slice + self.batch_size]),
                    )
345
                    loss2 = paddle.sum(
346 347
                        fluid.layers.log_loss(
                            prediction2,
348 349 350 351 352
                            to_variable(
                                labels_np[slice : slice + self.batch_size]
                            ),
                        )
                    )
353
                    loss2.backward()
354 355 356
                    adam2.minimize(loss2)
                    deepcf2.clear_gradients()
                    dy_loss2 = loss2.numpy()
357 358 359
                    sys.stderr.write(
                        'dynamic loss: %s %s\n' % (slice, dy_loss2)
                    )
360

361 362 363 364 365 366 367 368 369
        with fluid.dygraph.guard():
            with _test_eager_guard():
                paddle.seed(seed)
                paddle.framework.random._manual_program_seed(seed)
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed

                deepcf = DeepCF(num_users, num_items, matrix)
                adam = fluid.optimizer.AdamOptimizer(
370 371
                    0.01, parameter_list=deepcf.parameters()
                )
372

373
                for e in range(self.num_epoches):
374
                    sys.stderr.write('epoch %d\n' % e)
375 376 377
                    for slice in range(
                        0, self.batch_size * self.num_batches, self.batch_size
                    ):
378
                        if slice + self.batch_size >= users_np.shape[0]:
379 380
                            break
                        prediction = deepcf(
381 382 383 384 385 386 387
                            to_variable(
                                users_np[slice : slice + self.batch_size]
                            ),
                            to_variable(
                                items_np[slice : slice + self.batch_size]
                            ),
                        )
388
                        loss = paddle.sum(
389 390
                            fluid.layers.log_loss(
                                prediction,
391 392 393 394 395
                                to_variable(
                                    labels_np[slice : slice + self.batch_size]
                                ),
                            )
                        )
396 397 398 399
                        loss.backward()
                        adam.minimize(loss)
                        deepcf.clear_gradients()
                        eager_loss = loss.numpy()
400 401 402
                        sys.stderr.write(
                            'eager loss: %s %s\n' % (slice, eager_loss)
                        )
403

X
Xin Pan 已提交
404
        self.assertEqual(static_loss, dy_loss)
405
        self.assertEqual(static_loss, dy_loss2)
406
        self.assertEqual(static_loss, eager_loss)
X
Xin Pan 已提交
407 408 409


if __name__ == '__main__':
410
    paddle.enable_static()
X
Xin Pan 已提交
411
    unittest.main()