jit.py 65.1 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import os
import pickle
18
import warnings
19
import functools
20
from collections import OrderedDict
21
import inspect
M
Ming-Xu Huang 已提交
22
import threading
23
from typing import Text, Tuple, Any, List
24 25

import six
26
import paddle
J
Jiabin Yang 已提交
27
from paddle.fluid import core, dygraph
28 29
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
30
from paddle.fluid.layers.utils import flatten, pack_sequence_as
31
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
32
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
33
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
34
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
35
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
36
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX, INFER_PROPERTY_SUFFIX
37 38
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
0
0x45f 已提交
39
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter, EagerParamBase
40
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
J
Jiabin Yang 已提交
41
from paddle.fluid.framework import dygraph_only, _non_static_mode
42
from paddle.fluid.wrapped_decorator import wrap_decorator
43

44 45
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
46
    'set_verbosity', 'save', 'load', 'not_to_static'
47
]
48 49 50 51 52 53 54 55 56 57


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


58
def _extract_vars(inputs, result_list, err_tag='inputs'):
59
    if isinstance(inputs, Variable):
60
        result_list.append(inputs)
61
    elif isinstance(inputs, (list, tuple)):
62
        for var in inputs:
63
            _extract_vars(var, result_list, err_tag)
64 65
    else:
        raise TypeError(
66 67
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
            .format(err_tag, type(inputs)))
68 69


70
def extract_vars(inputs, err_tag='inputs'):
71
    result_list = []
72
    _extract_vars(inputs, result_list, err_tag)
73 74 75
    return result_list


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
105
              if paddle.mean(x) < 0:
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
125 126
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
127
        if _non_static_mode() or not program_translator.enable_to_static:
128
            logging_utils.warn(
129
                "The decorator 'dygraph_to_static_func' doesn't work in "
130
                "dygraph mode or set ProgramTranslator.enable to False. "
131 132 133 134
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
135 136 137 138

    return __impl__


139
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
140

141

142 143 144 145 146 147
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
148
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
149 150 151 152 153 154 155 156 157 158 159 160 161
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


162 163 164 165
def declarative(function=None,
                input_spec=None,
                build_strategy=None,
                property=False):
166 167 168
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
169 170 171 172
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
173

174
    Args:
175
        function (callable): callable imperative function.
176
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
177
            information of each input Tensor.
178 179 180 181 182
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
183
        property(bool, Optional): whether the fucntion is python property. The default is False.
184

185

186
    Returns:
187
        Tensor(s): containing the numerical result.
188

189 190
    Examples:
        .. code-block:: python
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
206

207
    """
208

209 210
    def decorated(python_func):
        """
211
        Decorates a python function into a StaticFunction object.
212 213 214
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
215

216
        # Step 2. copy some attributes from original python function.
217 218 219 220
        static_layer = copy_decorator_attrs(original_func=python_func,
                                            decorated_obj=StaticFunction(
                                                function=python_func,
                                                input_spec=input_spec,
221 222
                                                build_strategy=build_strategy,
                                                property=property))
223 224

        return static_layer
225

226 227 228
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
229 230
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}"
            .format(type(build_strategy).__name__))
231

232 233
    # for usage: `declarative(foo, ...)`
    if function is not None:
234
        if isinstance(function, Layer):
235
            if isinstance(function.forward, StaticFunction):
236
                class_name = function.__class__.__name__
237
                logging_utils.warn(
238 239
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one."
                    .format(class_name))
240 241 242 243
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
244

245 246
    # for usage: `@declarative`
    return decorated
247 248


249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


289
class _SaveLoadConfig(object):
290

291 292 293 294 295
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
296 297
        # used for `paddle.load`
        self._keep_name_table = False
298 299 300 301

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

302 303
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
304 305 306 307 308
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
309
        self.with_hook = False
310

311 312 313
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

314 315 316 317 318 319
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
320 321
        if spec is None:
            return
322 323
        if not isinstance(spec, list):
            raise TypeError(
324
                "The config `output_spec` should be 'list', but received input type is %s."
325 326 327 328
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
329
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
330 331 332 333 334 335 336 337 338
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
339 340
        if filename is None:
            return
341 342
        if not isinstance(filename, six.string_types):
            raise TypeError(
343
                "The config `model_filename` should be str, but received input's type is %s."
344 345
                % type(filename))
        if len(filename) == 0:
346
            raise ValueError("The config `model_filename` is empty string.")
347 348 349 350 351 352 353 354
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
355 356
        if filename is None:
            return
357 358
        if not isinstance(filename, six.string_types):
            raise TypeError(
359
                "The config `params_filename` should be str, but received input's type is %s."
360 361
                % type(filename))
        if len(filename) == 0:
362
            raise ValueError("The config `params_filename` is empty string.")
363 364
        self._params_filename = filename

365 366 367 368 369 370
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
371 372
        if value is None:
            return
373 374
        if not isinstance(value, bool):
            raise TypeError(
375
                "The config `keep_name_table` should be bool value, but received input's type is %s."
376 377 378
                % type(value))
        self._keep_name_table = value

379

380
def _parse_save_configs(configs):
381
    supported_configs = [
H
Hui Zhang 已提交
382 383
        'output_spec', "with_hook", "combine_params", "clip_extra",
        "skip_forward"
384
    ]
385 386 387 388 389 390 391 392 393 394 395

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
396
    inner_config.with_hook = configs.get('with_hook', False)
397
    inner_config.combine_params = configs.get("combine_params", False)
398
    inner_config.clip_extra = configs.get("clip_extra", True)
H
Hui Zhang 已提交
399
    inner_config.skip_forward = configs.get("skip_forward", False)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


422 423 424 425 426 427 428 429 430 431
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
432 433 434
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
435 436
    if input_spec is None:
        # no prune
437 438 439 440 441 442 443 444 445
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
446 447
        # no prune
        result_list = input_var_names
448
        # if input spec name not in input_var_names, only raise warning
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


472
def _get_output_vars(outputs, output_spec, with_hook=False):
473 474 475 476
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
477 478 479 480
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
481 482
    result_list = []
    output_vars_dict = OrderedDict()
483
    for var in flatten(outputs):
484 485 486
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
487
        result_list = list(output_vars_dict.values())
488
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
489
        result_list = list(output_vars_dict.values())
490 491 492 493 494 495 496 497 498 499 500 501
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
H
Hui Zhang 已提交
525 526 527 528
        raise ValueError("The ``path`` (%s) to load model not exists. "
                         "Please make sure that *.pdmodel exists or "
                         "don't using ``skip_forward=True`` to jit.save." %
                         path)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
548

549
    return model_path, config
550 551


M
Ming-Xu Huang 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


640
@wrap_decorator
M
Ming-Xu Huang 已提交
641
def _run_save_pre_hooks(func):
642

M
Ming-Xu Huang 已提交
643 644 645 646 647 648 649 650 651
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
def _save_property(filename: Text, property_vals: List[Tuple[Any, Text]]):
    """class property serialization.

    Args:
        filename (Text): *.meta
        property_vals (List[Tuple): class property.
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
686
@_run_save_pre_hooks
687
@switch_to_static_graph
688
def save(layer, path, input_spec=None, **configs):
689
    """
690
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
691 692
    format model, which can be used for inference or fine-tuning after loading.

693
    It will save the translated program and all related persistable
694
    variables of input Layer to given ``path`` .
695 696

    ``path`` is the prefix of saved objects, and the saved translated program file
697
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
698
    and here also saved some additional variable description information to a file,
699
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
700 701

    The saved model can be loaded by follow APIs:
702 703
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
704 705
      - Other C++ inference APIs

706
    .. note::
707
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to
708 709
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

710
    Args:
711
        layer (Layer|function): The Layer or function to be saved.
712
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
713 714 715
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
716
            the original Layer's forward method would be the inputs of the saved model. Default None.
717 718
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
719 720 721
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
722 723 724
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
725

726 727 728 729 730 731
    Returns:
        None

    Examples:
        .. code-block:: python

732
            # example 1: save layer
733
            import numpy as np
734 735 736
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
737

738 739 740
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
741

742 743 744 745 746 747 748
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
749

750 751 752 753
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
754

755 756
                def __len__(self):
                    return self.num_samples
757

758 759
            class LinearNet(nn.Layer):
                def __init__(self):
760
                    super(LinearNet, self).__init__()
761
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
762

763
                @paddle.jit.to_static
764 765 766
                def forward(self, x):
                    return self._linear(x)

767 768 769 770 771 772 773 774 775 776 777 778
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
779

780 781 782 783
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
784

785 786 787 788 789 790 791
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
792

793 794
            # train
            train(layer, loader, loss_fn, adam)
795

796
            # save
797 798
            path = "example_model/linear"
            paddle.jit.save(layer, path)
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
819

820
            save_function()
821 822
    """

823
    # 1. input build & check
824
    prog_translator = ProgramTranslator()
825
    if not prog_translator.enable_to_static:
826
        raise RuntimeError(
827
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
828
        )
829

830 831
    if not (isinstance(layer, Layer) or inspect.isfunction(layer)
            or isinstance(layer, StaticFunction)):
832
        raise TypeError(
833
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
834
            % type(layer))
835 836 837 838
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
839

840 841
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
842
    # function_spec, so here we save DataParallel._layers instead
843 844 845 846 847 848 849
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

850 851 852 853 854 855 856 857 858 859 860
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
861

862 863
    # avoid change user given input_spec
    inner_input_spec = None
864
    if input_spec is not None:
865 866 867 868 869 870 871 872 873
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

874
        if not isinstance(input_spec, (list, tuple)):
875 876 877
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
878
        inner_input_spec = []
879
        for var in flatten(input_spec):
880 881
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
882
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
883 884 885
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
886 887
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
888

889 890
    # parse configs
    configs = _parse_save_configs(configs)
891
    # whether outermost layer has pre/post hook, if does, we need also save
892
    # these operators in program.
893
    with_hook = configs.with_hook
894 895 896
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
897

898 899
    scope = core.Scope()
    extra_var_info = dict()
900 901
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
902 903
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
904 905
    else:
        # layer is function
906 907 908
        functions = [
            layer,
        ]
909

910
    combine_vars = {}
911
    property_vals = []  # (value, key)
H
Hui Zhang 已提交
912
    concrete_program = None
913 914 915 916
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
917 918 919 920 921 922 923 924
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
                        (immediate_val,
                         layer.__class__.__name__ + '.' + attr_func))
                    continue

925
                concrete_program = static_func.concrete_program_specify_input_spec(
926
                    inner_input_spec, with_hook=with_hook)
927
            elif 'forward' == attr_func:
H
Hui Zhang 已提交
928 929 930 931
                if configs.skip_forward:
                    # do not jit.save forward function
                    continue

932
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
933
                # inner_input_spec is list[InputSpec], it should be packed with same structure
934 935 936 937
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
938 939
                static_forward = declarative(inner_layer.forward,
                                             input_spec=inner_input_spec)
940 941
                concrete_program = static_forward.concrete_program_specify_input_spec(
                    with_hook=with_hook)
942 943 944 945 946 947
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
948 949 950
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
951 952 953 954 955 956
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

957 958 959 960 961 962
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
963 964
                static_function = declarative(attr_func,
                                              input_spec=inner_input_spec)
965 966 967 968
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
969 970
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'
                        .format(layer))
971

972
        # when save multi `StaticFunction`, all `StaticFunction` share params.
973 974
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
975
            dygraph_state_dict = inner_layer.to_static_state_dict()
976 977
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
978 979
                dygraph_state_dict = attr_func._class_instance.to_static_state_dict(
                )
980 981

        if dygraph_state_dict:
982 983 984 985 986
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
987
            state_var_dict = dict()
988
            for structured_name, var in six.iteritems(dygraph_state_dict):
989
                state_names_dict[var.name] = structured_name
990
                state_var_dict[var.name] = var
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
                        param_or_buffer.name).get_tensor()
                    #src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = state_var_dict[
                        param_or_buffer.name].value().get_tensor()
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
                            param_or_buffer.name]
                    extra_info_dict[
                        'stop_gradient'] = param_or_buffer.stop_gradient
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1018 1019

        # 4. build input & output of save_infernece_model
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
1032 1033
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
1034
        # var name of output, and we don't recommended to use output_spec
1035 1036
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1037
        output_vars = _get_output_vars(concrete_program.outputs,
1038
                                       configs.output_spec, with_hook)
1039 1040 1041 1042 1043 1044 1045

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1046
        # so we don't support set model_filename & params_filename
1047
        if 'forward' == attr_func or not isinstance(layer, Layer):
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1064
                program_only=configs._program_only,
1065
                clip_extra=configs.clip_extra)
1066

1067 1068 1069 1070 1071 1072
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
                input_var_names, output_vars)
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1073 1074 1075

    # save shared params
    if combine_params:
1076 1077 1078 1079 1080 1081
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1082 1083 1084 1085 1086 1087
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
            paddle.static.save_vars(Executor(_current_expected_place()),
                                    dirname=model_path,
                                    vars=list(
                                        filter(paddle.fluid.io.is_persistable,
1088
                                               ordered_vars)),
1089
                                    filename=params_filename)
1090
        # save property
1091 1092 1093
        property_save_path = os.path.join(os.path.normpath(model_path),
                                          file_prefix + INFER_PROPERTY_SUFFIX)
        _save_property(property_save_path, property_vals)
1094

1095 1096 1097 1098 1099 1100 1101
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1102 1103
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1104 1105
    # configure redundant information to proceed.
    #
1106 1107
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1108 1109
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1110 1111 1112

    # "layer" can only be Layer or function or StaticFunction.
    contain_parameter = False
H
Hui Zhang 已提交
1113 1114 1115
    if concrete_program is not None:
        for var in concrete_program.main_program.list_vars():
            contain_parameter |= isinstance(var, Parameter)
1116 1117

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1118 1119 1120 1121
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1122 1123 1124


@dygraph_only
1125
def load(path, **configs):
1126 1127 1128
    """
    :api_attr: imperative

1129 1130
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1131
    then performing inference or fine-tune training.
1132 1133

    .. note::
1134
        If you load model saved by ``paddle.static.save_inference_model`` ,
1135 1136
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1137
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1138 1139 1140 1141
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1142
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1143 1144
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1145 1146
            DO NOT use them. Default None.
            The following options are currently supported:
1147 1148 1149 1150
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1151 1152
            by default.

1153 1154 1155 1156 1157

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1158
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1159 1160 1161 1162

        .. code-block:: python

            import numpy as np
1163 1164 1165
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1166

1167 1168 1169
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1170

1171 1172
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1173

1174 1175 1176 1177
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1178

1179 1180 1181 1182
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1183

1184 1185 1186 1187 1188
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1189
                    super(LinearNet, self).__init__()
1190
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1191

1192
                @paddle.jit.to_static
1193 1194 1195
                def forward(self, x):
                    return self._linear(x)

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1207
            # 1. train & save model.
1208

1209
            # create network
1210 1211 1212 1213
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1214
            # create data loader
1215 1216 1217 1218 1219 1220
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1221

1222 1223
            # train
            train(layer, loader, loss_fn, adam)
1224

1225
            # save
1226 1227
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1228

1229
            # 2. load model
1230

1231
            # load
1232
            loaded_layer = paddle.jit.load(path)
1233 1234

            # inference
1235 1236 1237
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1238 1239

            # fine-tune
1240 1241 1242
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1243 1244


1245
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1246 1247 1248 1249

        .. code-block:: python

            import numpy as np
1250
            import paddle
1251
            import paddle.static as static
1252 1253
            import paddle.nn as nn
            import paddle.optimizer as opt
1254
            import paddle.nn.functional as F
1255

1256 1257 1258
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1259

1260 1261 1262 1263 1264 1265 1266
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1267

1268 1269 1270 1271
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1272

1273 1274
                def __len__(self):
                    return self.num_samples
1275

1276 1277
            paddle.enable_static()

1278 1279
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1280
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1281 1282
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1283

1284
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1285 1286
            optimizer.minimize(avg_loss)

1287 1288 1289
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1290

1291 1292 1293 1294 1295
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1296
                batch_size=BATCH_SIZE,
1297 1298
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1299
                return_list=False,
1300
                num_workers=2)
1301 1302 1303 1304

            # 1. train and save inference model
            for data in loader():
                exe.run(
1305
                    static.default_main_program(),
1306
                    feed=data,
1307 1308 1309
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1310
            paddle.fluid.io.save_inference_model(
1311 1312 1313
                model_path, ["image"], [pred], exe)

            # 2. load model
1314 1315

            # enable dygraph mode
1316 1317 1318 1319
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1320

1321 1322 1323
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1324 1325
            pred = fc(x)

1326
            # fine-tune
1327
            fc.train()
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1345
    """
1346 1347 1348 1349
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1350
    return TranslatedLayer._construct(model_path, config)
1351 1352


1353
@dygraph_only
Z
Zeng Jinle 已提交
1354 1355 1356 1357 1358
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1359
    assert isinstance(layer, Layer)
1360 1361 1362 1363 1364 1365 1366 1367 1368

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1369
        original_outputs = layer(*inputs)
1370 1371 1372 1373
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1374
        out_vars = extract_vars(outputs, err_tag='outputs')
1375

1376
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1377
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1378 1379 1380 1381 1382
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1383
    return original_outputs, program, feed_names, fetch_names, parameters
1384 1385 1386 1387


class TracedLayer(object):
    """
1388
    :api_attr: imperative
1389

1390 1391 1392 1393 1394
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1395 1396 1397 1398

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1399 1400

    All TracedLayer objects should not be created by constructor and should
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1412
        self._params = parameters
1413 1414 1415 1416 1417

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1418
            src_tensor = p.value().get_tensor()
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1442
        This method is the only allowed method to create TracedLayer object.
1443 1444 1445 1446
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1447
            layer (paddle.nn.Layer): the layer object to be traced.
1448 1449
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1450 1451

        Returns:
1452
            tuple: A tuple of 2 items, whose the first item is the output of
1453 1454
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1455

1456
        Examples:
1457 1458
            .. code-block:: python:

1459
                import paddle
1460

1461
                class ExampleLayer(paddle.nn.Layer):
1462 1463
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1464
                        self._fc = paddle.nn.Linear(3, 10)
1465 1466 1467 1468

                    def forward(self, input):
                        return self._fc(input)

1469

1470 1471 1472 1473 1474 1475
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1476

1477 1478
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1479

1480 1481
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1482

1483
        """
1484 1485 1486 1487
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1488 1489
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1490 1491 1492 1493 1494 1495 1496
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1497
            build_strategy (BuildStrategy, optional): build strategy of
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1508
                import paddle
1509

1510
                class ExampleLayer(paddle.nn.Layer):
1511 1512
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1513
                        self._fc = paddle.nn.Linear(3, 10)
1514 1515 1516 1517

                    def forward(self, input):
                        return self._fc(input)

1518 1519 1520 1521
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1522

1523 1524
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1525

1526 1527
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1528

1529 1530
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1531 1532 1533

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1534 1535 1536 1537 1538 1539 1540 1541
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1558
        if _non_static_mode():
1559
            for x, name in zip(inputs, self._feed_names):
1560
                feed_dict[name] = x.value().get_tensor()
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1581
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1582
        """
1583 1584
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1585

1586 1587 1588
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1589
        Args:
1590
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1591
            feed (list[int], optional): the input variable indices of the saved
1592
                inference model. If None, all input variables of the
1593 1594 1595 1596 1597 1598
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1599
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1600 1601

        Returns:
1602
            None
1603 1604 1605 1606 1607

        Examples:
            .. code-block:: python:

                import numpy as np
1608
                import paddle
1609

1610
                class ExampleLayer(paddle.nn.Layer):
1611 1612
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1613
                        self._fc = paddle.nn.Linear(3, 10)
1614 1615 1616 1617

                    def forward(self, input):
                        return self._fc(input)

1618 1619
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1620 1621
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1622

1623 1624
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1625

1626 1627 1628 1629
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1630
                                                    exe)
1631 1632 1633

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1634
        """
1635
        check_type(path, "path", str,
1636 1637 1638 1639 1640
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
1641 1642 1643
                check_type(
                    f, "each element of feed", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1644 1645 1646 1647
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
1648 1649 1650
                check_type(
                    f, "each element of fetch", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1651
        clip_extra = kwargs.get('clip_extra', True)
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1664
        from paddle.fluid.io import save_inference_model
1665 1666 1667 1668 1669

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1670
            return [all_vars[idx] for idx in partial_vars]
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1681 1682 1683
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1684 1685 1686 1687 1688 1689 1690 1691
            save_inference_model(dirname=dirname,
                                 feeded_var_names=feeded_var_names,
                                 target_vars=target_vars,
                                 executor=self._exe,
                                 main_program=self._program.clone(),
                                 model_filename=model_filename,
                                 params_filename=params_filename,
                                 clip_extra=clip_extra)