jit.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
__all__ = ['TracedLayer']
16

17
from .base import program_desc_tracing_guard, switch_to_static_graph
18
from .layers import Layer
19 20 21 22 23
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
import paddle.fluid.io as fluid_io
24 25 26 27 28 29 30 31 32 33 34 35


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
36
        result_list.append(inputs)
37 38 39 40 41 42 43 44 45 46 47 48 49

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


@dygraph_only
Z
Zeng Jinle 已提交
50 51 52 53 54
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
55
    assert isinstance(layer, Layer)
56 57 58 59 60 61 62 63 64

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
65
        original_outputs = layer(*inputs)
66 67 68 69
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
70
        out_vars = [var for var in outputs]
71

Z
Zeng Jinle 已提交
72 73
        program_desc, feed_names, fetch_names = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
74 75 76 77 78
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    return original_outputs, program, feed_names, fetch_names


class TracedLayer(object):
    """
    TracedLayer is a callable object which is converted from dygraph model. 
    Inside TracedLayer, the dygraph model is converted into a static graph
    model, and it would run the static graph model using 
    :code:`Executor` and :code:`CompiledProgram` . The static graph model 
    would share parameters with the dygraph model. 
    
    All TracedLayer objects should not be created by constructor and should 
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
107
            src_tensor = p.value().get_tensor()
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
        This method is the only allowed method to create TracedLayer object. 
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
            layer (paddle.fluid.dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object. 

        Returns:
            A tuple of 2 items, whose the first item is the output of 
            :code:`layer(*inputs)` , and the second item is the created
            TracedLayer object. 
            
        Examples:

            .. code-block:: python:

                import paddle.fluid as fluid
                from paddle.fluid.dygraph import FC, to_variable, TracedLayer
                import paddle.fluid.dygraph.jit as jit
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
                    def __init__(self, name_scope):
                        super(ExampleLayer, self).__init__(name_scope)
                        self._fc = FC(self.full_name(), 10)

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
                    layer = ExampleLayer("example_layer")
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
                    out_static_graph = static_layer([in_var]) 
        """
Z
Zeng Jinle 已提交
168
        outs, prog, feed, fetch = _trace(layer, inputs)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        traced = TracedLayer(prog, layer.parameters(), feed, fetch)
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
            build_strategy (BuildStrategy, optional): build strategy of 
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:

            .. code-block:: python:

                import paddle.fluid as fluid
                from paddle.fluid.dygraph import FC, to_variable, TracedLayer
                import paddle.fluid.dygraph.jit as jit
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
                    def __init__(self, name_scope):
                        super(ExampleLayer, self).__init__(name_scope)
                        self._fc = FC(self.full_name(), 10) 

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
                    layer = ExampleLayer("example_layer")
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
237
                feed_dict[name] = x.value().get_tensor()
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
        Save the TracedLayer to an model for inference. The saved
        inference model can be loaded by C++ inference APIs. 

        Args:
            dirname (str): the directory to save the inference model.  
            feed (list[int], optional): the input variable indices of the saved
                inference model. If None, all input variables of the 
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
            The fetch variables' name list
        
        Return Type: 
            list(str)

        Examples:

            .. code-block:: python:

                import paddle.fluid as fluid
                from paddle.fluid.dygraph import FC, to_variable, TracedLayer
                import paddle.fluid.dygraph.jit as jit
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
                    def __init__(self, name_scope):
                        super(ExampleLayer, self).__init__(name_scope)
                        self._fc = FC(self.full_name(), 10) 

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
                    layer = ExampleLayer("example_layer")
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
                    static_layer.save_inference_model('./saved_infer_model')
        """

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

309
            return [all_vars[idx] for idx in partial_vars]
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

            return fluid_io.save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())