jit.py 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
__all__ = ['TracedLayer', 'dygraph_to_static_output']
18

19
import gast
20
import inspect
21
import textwrap
22 23

from ..wrapped_decorator import wrap_decorator
24
from .base import program_desc_tracing_guard, switch_to_static_graph
25
from .dygraph_to_static import DygraphToStaticAst
26
from .dygraph_to_static.ast_utils import ast_to_func
27
from .layers import Layer
28 29 30 31
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
32 33 34 35 36 37 38 39 40 41 42 43


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
44
        result_list.append(inputs)
45 46 47 48 49 50 51 52 53 54 55 56

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


57 58 59 60
def _dygraph_to_static_output_(dygraph_func):
    def __impl__(*args, **kwargs):
        # Get AST from dygraph function
        dygraph_code = inspect.getsource(dygraph_func)
61
        dygraph_code = textwrap.dedent(dygraph_code)
62
        root = gast.parse(dygraph_code)
63

64 65 66 67 68
        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
        root_wrapper = dygraph_to_static.get_static_ast(root)
        func_name = dygraph_to_static.get_module_name()
        static_func, file_name = ast_to_func(root_wrapper.node, func_name)
69 70 71 72 73 74 75 76 77

        return static_func(*args, **kwargs)

    return __impl__


dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_)


78
@dygraph_only
Z
Zeng Jinle 已提交
79 80 81 82 83
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
84
    assert isinstance(layer, Layer)
85 86 87 88 89 90 91 92 93

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
94
        original_outputs = layer(*inputs)
95 96 97 98
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
99
        out_vars = [var for var in outputs]
100

101
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
102
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
103 104 105 106 107
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

108
    return original_outputs, program, feed_names, fetch_names, parameters
109 110 111 112


class TracedLayer(object):
    """
113 114 115 116 117
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
118 119 120 121

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
122 123

    All TracedLayer objects should not be created by constructor and should
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
140
            src_tensor = p.value().get_tensor()
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
164
        This method is the only allowed method to create TracedLayer object.
165 166 167 168
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
169 170
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
171 172

        Returns:
173
            tuple: A tuple of 2 items, whose the first item is the output of
174
            :code:`layer(*inputs)` , and the second item is the created
175
            TracedLayer object.
176

177
        Examples:
178 179 180
            .. code-block:: python:

                import paddle.fluid as fluid
181
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
182 183 184
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
185 186 187
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
188 189 190 191 192

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
193
                    layer = ExampleLayer()
194 195 196
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
197 198 199 200 201 202 203 204 205

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
206
        """
207 208
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
209 210 211 212 213 214 215
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
216
            build_strategy (BuildStrategy, optional): build strategy of
217 218 219 220 221 222 223 224 225 226 227
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
228
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
229 230 231
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
232 233 234
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
235 236 237 238 239

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
240
                    layer = ExampleLayer()
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
274
                feed_dict[name] = x.value().get_tensor()
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
297 298
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
299 300

        Args:
301
            dirname (str): the directory to save the inference model.
302
            feed (list[int], optional): the input variable indices of the saved
303
                inference model. If None, all input variables of the
304 305 306 307 308 309 310 311
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
312
            None
313 314 315 316 317

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
318
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
319 320 321
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
322 323 324
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
325 326 327 328

                    def forward(self, input):
                        return self._fc(input)

329 330 331
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

332
                with fluid.dygraph.guard():
333
                    layer = ExampleLayer()
334 335
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
336 337 338 339 340 341 342 343 344
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
                
                place = fluid.CPUPlace() 
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
                                                    exe) 

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
345
        """
346
        from paddle.fluid.io import save_inference_model
347 348 349 350 351

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

352
            return [all_vars[idx] for idx in partial_vars]
353 354 355 356 357 358 359 360 361 362

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

363
            save_inference_model(
364 365 366 367 368
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())