jit.py 60.0 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
from __future__ import print_function

18 19
import os
import pickle
20
import warnings
21
import functools
22
from collections import OrderedDict
23
import inspect
M
Ming-Xu Huang 已提交
24
import threading
25 26

import six
27
import paddle
J
Jiabin Yang 已提交
28
from paddle.fluid import core, dygraph
29 30
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
31
from paddle.fluid.layers.utils import flatten, pack_sequence_as
32
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
33
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
34
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
35
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
36
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
37
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
38 39
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
40
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter
41 42
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
43
from paddle.fluid.wrapped_decorator import wrap_decorator
44

45 46
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
47
    'set_verbosity', 'save', 'load', 'not_to_static'
48
]
49 50 51 52 53 54 55 56 57 58


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


59
def _extract_vars(inputs, result_list, err_tag='inputs'):
60
    if isinstance(inputs, Variable):
61
        result_list.append(inputs)
62
    elif isinstance(inputs, (list, tuple)):
63
        for var in inputs:
64
            _extract_vars(var, result_list, err_tag)
65 66
    else:
        raise TypeError(
67 68
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(err_tag, type(inputs)))
69 70


71
def extract_vars(inputs, err_tag='inputs'):
72
    result_list = []
73
    _extract_vars(inputs, result_list, err_tag)
74 75 76
    return result_list


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
126 127
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
128
        if in_dygraph_mode() or not program_translator.enable_to_static:
129
            logging_utils.warn(
130
                "The decorator 'dygraph_to_static_func' doesn't work in "
131
                "dygraph mode or set ProgramTranslator.enable to False. "
132 133 134 135
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
136 137 138 139

    return __impl__


140
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
141

142

143 144 145 146 147 148
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
149
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


163
def declarative(function=None, input_spec=None, build_strategy=None):
164 165 166
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
167 168 169 170
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
171

172
    Args:
173
        function (callable): callable imperative function.
174
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
175
            information of each input Tensor.
176 177 178 179 180 181
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.

182

183
    Returns:
184
        Tensor(s): containing the numerical result.
185

186 187
    Examples:
        .. code-block:: python
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
203

204
    """
205

206 207
    def decorated(python_func):
        """
208
        Decorates a python function into a StaticFunction object.
209 210 211
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
212

213 214 215
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
216
            decorated_obj=StaticFunction(
217 218 219
                function=python_func,
                input_spec=input_spec,
                build_strategy=build_strategy))
220 221

        return static_layer
222

223 224 225 226 227 228
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}".
            format(type(build_strategy).__name__))

229 230
    # for usage: `declarative(foo, ...)`
    if function is not None:
231
        if isinstance(function, Layer):
232
            if isinstance(function.forward, StaticFunction):
233
                class_name = function.__class__.__name__
234
                logging_utils.warn(
235 236 237 238 239 240
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
241

242 243
    # for usage: `@declarative`
    return decorated
244 245


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


286
class _SaveLoadConfig(object):
287 288 289 290 291
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
292 293
        # used for `paddle.load`
        self._keep_name_table = False
294 295 296 297

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

298 299
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
300 301 302 303 304 305 306 307 308 309 310 311
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
312 313
        if spec is None:
            return
314 315
        if not isinstance(spec, list):
            raise TypeError(
316
                "The config `output_spec` should be 'list', but received input type is %s."
317 318 319 320
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
321
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
322 323 324 325 326 327 328 329 330
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
331 332
        if filename is None:
            return
333 334
        if not isinstance(filename, six.string_types):
            raise TypeError(
335
                "The config `model_filename` should be str, but received input's type is %s."
336 337
                % type(filename))
        if len(filename) == 0:
338
            raise ValueError("The config `model_filename` is empty string.")
339 340 341 342 343 344 345 346
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
347 348
        if filename is None:
            return
349 350
        if not isinstance(filename, six.string_types):
            raise TypeError(
351
                "The config `params_filename` should be str, but received input's type is %s."
352 353
                % type(filename))
        if len(filename) == 0:
354
            raise ValueError("The config `params_filename` is empty string.")
355 356
        self._params_filename = filename

357 358 359 360 361 362
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
363 364
        if value is None:
            return
365 366
        if not isinstance(value, bool):
            raise TypeError(
367
                "The config `keep_name_table` should be bool value, but received input's type is %s."
368 369 370
                % type(value))
        self._keep_name_table = value

371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
def _parse_save_configs(configs):
    supported_configs = ['output_spec']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


407 408 409 410 411 412 413 414 415 416
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
417 418 419
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
420 421
    if input_spec is None:
        # no prune
422 423 424 425 426 427 428 429 430
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
431 432
        # no prune
        result_list = input_var_names
433
        # if input spec name not in input_var_names, only raise warning
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
464
    for var in flatten(outputs):
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
526

527
    return model_path, config
528 529


M
Ming-Xu Huang 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


def _run_save_pre_hooks(func):
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


@_run_save_pre_hooks
629
@switch_to_static_graph
630
def save(layer, path, input_spec=None, **configs):
631
    """
632
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
633 634
    format model, which can be used for inference or fine-tuning after loading.

635
    It will save the translated program and all related persistable
636
    variables of input Layer to given ``path`` .
637 638

    ``path`` is the prefix of saved objects, and the saved translated program file
639
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
640
    and here also saved some additional variable description information to a file,
641
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
642 643

    The saved model can be loaded by follow APIs:
644 645
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
646 647
      - Other C++ inference APIs

648 649 650 651
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

652
    Args:
653
        layer (Layer|function): The Layer or function to be saved.
654
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
655 656 657
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
658
            the original Layer's forward method would be the inputs of the saved model. Default None.
659 660
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
661 662 663
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
664 665 666
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
667

668 669 670 671 672 673
    Returns:
        None

    Examples:
        .. code-block:: python

674
            # example 1: save layer
675
            import numpy as np
676 677 678
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
679

680 681 682
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
683

684 685 686 687 688 689 690
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
691

692 693 694 695
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
696

697 698
                def __len__(self):
                    return self.num_samples
699

700 701
            class LinearNet(nn.Layer):
                def __init__(self):
702
                    super(LinearNet, self).__init__()
703
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
704

705
                @paddle.jit.to_static
706 707 708
                def forward(self, x):
                    return self._linear(x)

709 710 711 712 713 714 715 716 717 718 719 720
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
721

722 723 724 725
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
726

727 728 729 730 731 732 733
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
734

735 736
            # train
            train(layer, loader, loss_fn, adam)
737

738
            # save
739 740
            path = "example_model/linear"
            paddle.jit.save(layer, path)
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
763 764
    """

765
    # 1. input build & check
766
    prog_translator = ProgramTranslator()
767
    if not prog_translator.enable_to_static:
768
        raise RuntimeError(
769
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
770
        )
771 772 773

    if not (isinstance(layer, Layer) or inspect.isfunction(layer) or isinstance(
            layer, StaticFunction)):
774
        raise TypeError(
775
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
776
            % type(layer))
777 778 779 780
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
781

782 783
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
784
    # function_spec, so here we save DataParallel._layers instead
785 786 787 788 789 790 791
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

792 793 794 795 796 797 798 799 800 801 802
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
803

804 805
    # avoid change user given input_spec
    inner_input_spec = None
806
    if input_spec is not None:
807 808 809 810 811 812 813 814 815
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

816
        if not isinstance(input_spec, (list, tuple)):
817 818 819
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
820
        inner_input_spec = []
821
        for var in flatten(input_spec):
822 823
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
824
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
825 826 827
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
828 829
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
830

831 832
    # parse configs
    configs = _parse_save_configs(configs)
833 834
    scope = core.Scope()
    extra_var_info = dict()
835 836 837 838 839 840 841 842 843 844 845 846 847
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
    else:
        # layer is function
        functions = [layer, ]
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
                concrete_program = static_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
848
                # inner_input_spec is list[InputSpec], it should be packed with same structure
849 850 851 852 853 854 855 856 857 858 859 860 861 862
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_forward = declarative(
                    inner_layer.forward, input_spec=inner_input_spec)
                concrete_program = static_forward.concrete_program
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_function = declarative(
                    attr_func, input_spec=inner_input_spec)
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.
                        format(layer))

        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
883
            dygraph_state_dict = inner_layer.to_static_state_dict()
884 885
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
886 887
                dygraph_state_dict = attr_func._class_instance.to_static_state_dict(
                )
888 889

        if dygraph_state_dict:
890 891 892 893 894
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
895
            state_var_dict = dict()
896
            for structured_name, var in six.iteritems(dygraph_state_dict):
897
                state_names_dict[var.name] = structured_name
898
                state_var_dict[var.name] = var
899 900

            # 3. share parameters from Layer to scope & record var info
J
Jiabin Yang 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
            with dygraph.guard():
                for param_or_buffer in concrete_program.parameters:
                    # share to scope
                    if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                        scr_tensor = param_or_buffer.value().get_map_tensor()
                        tgt_var = scope.var(param_or_buffer.name)
                        tgt_var.set_vocab(scr_tensor)
                    else:
                        param_or_buffer_tensor = scope.var(
                            param_or_buffer.name).get_tensor()
                        #src_tensor = param_or_buffer.value().get_tensor()
                        src_tensor = state_var_dict[param_or_buffer.name].value(
                        ).get_tensor()
                        param_or_buffer_tensor._share_data_with(src_tensor)
                    # record var info
                    if param_or_buffer.name not in extra_var_info:
                        extra_info_dict = dict()
                        if param_or_buffer.name in state_names_dict:
                            extra_info_dict[
                                'structured_name'] = state_names_dict[
                                    param_or_buffer.name]
                        extra_info_dict[
                            'stop_gradient'] = param_or_buffer.stop_gradient
                        if isinstance(param_or_buffer, ParamBase):
                            extra_info_dict[
                                'trainable'] = param_or_buffer.trainable
                        extra_var_info[param_or_buffer.name] = extra_info_dict
928 929

        # 4. build input & output of save_infernece_model
930 931 932 933 934 935 936 937 938 939 940 941
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
942 943
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
944 945 946 947 948 949 950 951 952 953
        # var name of output, and we don't recommended to use output_spec
        output_vars = _get_output_vars(concrete_program.outputs,
                                       configs.output_spec)

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
954
        # so we don't support set model_filename & params_filename
955
        if 'forward' == attr_func or not isinstance(layer, Layer):
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
972 973
                program_only=configs._program_only,
                clip_extra=False)
974 975 976 977 978 979 980 981

    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
982 983
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
984 985
    # configure redundant information to proceed.
    #
986 987
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
988 989
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
990 991 992 993 994 995 996 997

    # "layer" can only be Layer or function or StaticFunction.

    contain_parameter = False
    for var in concrete_program.main_program.list_vars():
        contain_parameter |= isinstance(var, Parameter)

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
998 999 1000 1001
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1002 1003 1004


@dygraph_only
1005
def load(path, **configs):
1006 1007 1008
    """
    :api_attr: imperative

1009 1010
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1011
    then performing inference or fine-tune training.
1012 1013

    .. note::
1014
        If you load model saved by ``paddle.static.save_inference_model`` ,
1015 1016
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1017
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1018 1019 1020 1021
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1022
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1023 1024
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1025 1026
            DO NOT use them. Default None.
            The following options are currently supported:
1027 1028 1029 1030
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1031 1032
            by default.

1033 1034 1035 1036 1037

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1038
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1039 1040 1041 1042

        .. code-block:: python

            import numpy as np
1043 1044 1045
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1046

1047 1048 1049
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1050

1051 1052
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1053

1054 1055 1056 1057
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1058

1059 1060 1061 1062
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1063

1064 1065 1066 1067 1068
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1069
                    super(LinearNet, self).__init__()
1070
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1071

1072
                @paddle.jit.to_static
1073 1074 1075
                def forward(self, x):
                    return self._linear(x)

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1087
            # 1. train & save model.
1088

1089
            # create network
1090 1091 1092 1093
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1094
            # create data loader
1095 1096 1097 1098 1099 1100
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1101

1102 1103
            # train
            train(layer, loader, loss_fn, adam)
1104

1105
            # save
1106 1107
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1108

1109
            # 2. load model
1110

1111
            # load
1112
            loaded_layer = paddle.jit.load(path)
1113 1114

            # inference
1115 1116 1117
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1118 1119

            # fine-tune
1120 1121 1122
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1123 1124


1125
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1126 1127 1128 1129

        .. code-block:: python

            import numpy as np
1130
            import paddle
1131
            import paddle.static as static
1132 1133
            import paddle.nn as nn
            import paddle.optimizer as opt
1134
            import paddle.nn.functional as F
1135

1136 1137 1138
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1139

1140 1141 1142 1143 1144 1145 1146
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1147

1148 1149 1150 1151
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1152

1153 1154
                def __len__(self):
                    return self.num_samples
1155

1156 1157
            paddle.enable_static()

1158 1159
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1160
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1161 1162
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1163

1164
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1165 1166
            optimizer.minimize(avg_loss)

1167 1168 1169
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1170

1171 1172 1173 1174 1175
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1176
                batch_size=BATCH_SIZE,
1177 1178
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1179
                return_list=False,
1180
                num_workers=2)
1181 1182 1183 1184

            # 1. train and save inference model
            for data in loader():
                exe.run(
1185
                    static.default_main_program(),
1186
                    feed=data,
1187 1188 1189
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1190
            paddle.fluid.io.save_inference_model(
1191 1192 1193
                model_path, ["image"], [pred], exe)

            # 2. load model
1194 1195

            # enable dygraph mode
1196 1197 1198 1199
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1200

1201 1202 1203
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1204 1205
            pred = fc(x)

1206
            # fine-tune
1207
            fc.train()
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1225
    """
1226 1227 1228 1229
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1230
    return TranslatedLayer._construct(model_path, config)
1231 1232


1233
@dygraph_only
Z
Zeng Jinle 已提交
1234 1235 1236 1237 1238
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1239
    assert isinstance(layer, Layer)
1240 1241 1242 1243 1244 1245 1246 1247 1248

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1249
        original_outputs = layer(*inputs)
1250 1251 1252 1253
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1254
        out_vars = extract_vars(outputs, err_tag='outputs')
1255

1256
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1257
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1258 1259 1260 1261 1262
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1263
    return original_outputs, program, feed_names, fetch_names, parameters
1264 1265 1266 1267


class TracedLayer(object):
    """
1268
    :api_attr: imperative
1269

1270 1271 1272 1273 1274
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1275 1276 1277 1278

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1279 1280

    All TracedLayer objects should not be created by constructor and should
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1292
        self._params = parameters
1293 1294 1295 1296 1297

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1298
            src_tensor = p.value().get_tensor()
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1322
        This method is the only allowed method to create TracedLayer object.
1323 1324 1325 1326
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1327
            layer (paddle.nn.Layer): the layer object to be traced.
1328 1329
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1330 1331

        Returns:
1332
            tuple: A tuple of 2 items, whose the first item is the output of
1333 1334
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1335

1336
        Examples:
1337 1338
            .. code-block:: python:

1339
                import paddle
1340

1341
                class ExampleLayer(paddle.nn.Layer):
1342 1343
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1344
                        self._fc = paddle.nn.Linear(3, 10)
1345 1346 1347 1348

                    def forward(self, input):
                        return self._fc(input)

1349

1350 1351 1352 1353 1354 1355
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1356

1357 1358
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1359

1360 1361
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1362

1363
        """
1364 1365 1366 1367
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1368 1369
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1370 1371 1372 1373 1374 1375 1376
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1377
            build_strategy (BuildStrategy, optional): build strategy of
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1388
                import paddle
1389

1390
                class ExampleLayer(paddle.nn.Layer):
1391 1392
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1393
                        self._fc = paddle.nn.Linear(3, 10)
1394 1395 1396 1397

                    def forward(self, input):
                        return self._fc(input)

1398 1399 1400 1401
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1402

1403 1404
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1405

1406 1407
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1408

1409 1410
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1411 1412 1413

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1414 1415 1416 1417 1418 1419 1420 1421
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1440
                feed_dict[name] = x.value().get_tensor()
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1461
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1462
        """
1463 1464
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1465

1466 1467 1468
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1469
        Args:
1470
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1471
            feed (list[int], optional): the input variable indices of the saved
1472
                inference model. If None, all input variables of the
1473 1474 1475 1476 1477 1478
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1479
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1480 1481

        Returns:
1482
            None
1483 1484 1485 1486 1487

        Examples:
            .. code-block:: python:

                import numpy as np
1488
                import paddle
1489

1490
                class ExampleLayer(paddle.nn.Layer):
1491 1492
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1493
                        self._fc = paddle.nn.Linear(3, 10)
1494 1495 1496 1497

                    def forward(self, input):
                        return self._fc(input)

1498 1499
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1500 1501
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1502

1503 1504
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1505

1506 1507 1508 1509
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1510
                                                    exe)
1511 1512 1513

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1514
        """
1515
        check_type(path, "path", str,
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
1529
        clip_extra = kwargs.get('clip_extra', False)
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1542
        from paddle.fluid.io import save_inference_model
1543 1544 1545 1546 1547

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1548
            return [all_vars[idx] for idx in partial_vars]
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1559 1560 1561
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1562
            save_inference_model(
1563 1564 1565 1566
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
1567 1568
                main_program=self._program.clone(),
                model_filename=model_filename,
1569 1570
                params_filename=params_filename,
                clip_extra=clip_extra)