jit.py 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
__all__ = ['TracedLayer', 'dygraph_to_static_output']
16

17
import gast
18
import inspect
19
import textwrap
20 21

from ..wrapped_decorator import wrap_decorator
22
from .base import program_desc_tracing_guard, switch_to_static_graph
23
from .dygraph_to_static import DygraphToStaticAst
24
from .dygraph_to_static.ast_utils import ast_to_func
25
from .layers import Layer
26 27 28 29
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
30 31 32 33 34 35 36 37 38 39 40 41


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
42
        result_list.append(inputs)
43 44 45 46 47 48 49 50 51 52 53 54

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


55 56 57 58
def _dygraph_to_static_output_(dygraph_func):
    def __impl__(*args, **kwargs):
        # Get AST from dygraph function
        dygraph_code = inspect.getsource(dygraph_func)
59
        dygraph_code = textwrap.dedent(dygraph_code)
60
        root = gast.parse(dygraph_code)
61 62 63 64
        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
        root_wrapper = dygraph_to_static.get_static_ast(root)
        func_name = dygraph_to_static.get_module_name()
65

66
        static_func, file_name = ast_to_func(root_wrapper.node, func_name)
67 68 69 70 71 72 73 74 75

        return static_func(*args, **kwargs)

    return __impl__


dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_)


76
@dygraph_only
Z
Zeng Jinle 已提交
77 78 79 80 81
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
82
    assert isinstance(layer, Layer)
83 84 85 86 87 88 89 90 91

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
92
        original_outputs = layer(*inputs)
93 94 95 96
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
97
        out_vars = [var for var in outputs]
98

99
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
100
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
101 102 103 104 105
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

106
    return original_outputs, program, feed_names, fetch_names, parameters
107 108 109 110


class TracedLayer(object):
    """
111 112 113 114 115 116 117 118 119
    TracedLayer is used to convert a forward dygraph model to a static 
    graph model. This is mainly used to save the dygraph model for online 
    inference using C++. Besides, users can also do inference in Python 
    using the converted static graph model, which usually has better 
    performance than the original dygraph model.  

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    
    All TracedLayer objects should not be created by constructor and should 
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
138
            src_tensor = p.value().get_tensor()
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
        This method is the only allowed method to create TracedLayer object. 
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
167 168
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
169 170

        Returns:
171
            tuple: A tuple of 2 items, whose the first item is the output of
172
            :code:`layer(*inputs)` , and the second item is the created
173
            TracedLayer object.
174

175
        Examples:
176 177 178
            .. code-block:: python:

                import paddle.fluid as fluid
179
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
180 181 182
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
183 184 185
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
186 187 188 189 190

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
191
                    layer = ExampleLayer()
192 193 194
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
195 196 197 198 199 200 201 202 203

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
204
        """
205 206
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
207 208 209 210 211 212 213
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
214
            build_strategy (BuildStrategy, optional): build strategy of
215 216 217 218 219 220 221 222 223 224 225
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
226
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
227 228 229
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
230 231 232
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
233 234 235 236 237

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
238
                    layer = ExampleLayer()
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
272
                feed_dict[name] = x.value().get_tensor()
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
295 296
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
297 298

        Args:
299
            dirname (str): the directory to save the inference model.
300
            feed (list[int], optional): the input variable indices of the saved
301
                inference model. If None, all input variables of the
302 303 304 305 306 307 308 309
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
310
            None
311 312 313 314 315

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
316
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
317 318 319
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
320 321 322
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
323 324 325 326

                    def forward(self, input):
                        return self._fc(input)

327 328 329
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

330
                with fluid.dygraph.guard():
331
                    layer = ExampleLayer()
332 333
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
334 335 336 337 338 339 340 341 342
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
                
                place = fluid.CPUPlace() 
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
                                                    exe) 

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
343
        """
344
        from paddle.fluid.io import save_inference_model
345 346 347 348 349

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

350
            return [all_vars[idx] for idx in partial_vars]
351 352 353 354 355 356 357 358 359 360

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

361
            save_inference_model(
362 363 364 365 366
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())