jit.py 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22
import inspect
23 24

import six
25
import paddle
26
from paddle.fluid import core
27 28
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
29
from paddle.fluid.layers.utils import flatten, pack_sequence_as
30
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
31
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
32
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
33
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
34
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
35
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
36 37
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
38 39 40
from paddle.fluid.framework import Block, ParamBase, Program, Variable
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
41
from paddle.fluid.wrapped_decorator import wrap_decorator
42

43 44
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
45
    'set_verbosity', 'save', 'load', 'not_to_static'
46
]
47 48 49 50 51 52 53 54 55 56


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


57
def _extract_vars(inputs, result_list, err_tag='inputs'):
58
    if isinstance(inputs, Variable):
59
        result_list.append(inputs)
60
    elif isinstance(inputs, (list, tuple)):
61
        for var in inputs:
62
            _extract_vars(var, result_list, err_tag)
63 64
    else:
        raise TypeError(
65 66
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(err_tag, type(inputs)))
67 68


69
def extract_vars(inputs, err_tag='inputs'):
70
    result_list = []
71
    _extract_vars(inputs, result_list, err_tag)
72 73 74
    return result_list


75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
124 125
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
126
        if in_dygraph_mode() or not program_translator.enable_to_static:
127
            logging_utils.warn(
128
                "The decorator 'dygraph_to_static_func' doesn't work in "
129
                "dygraph mode or set ProgramTranslator.enable to False. "
130 131 132 133
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
134 135 136 137

    return __impl__


138
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
139

140

141 142 143 144 145 146
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
147
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
148 149 150 151 152 153 154 155 156 157 158 159 160 161
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
162 163 164
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
165 166 167 168
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
169

170
    Args:
171
        function (callable): callable imperative function.
172
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
173
            information of each input Tensor.
174

175
    Returns:
176
        Tensor(s): containing the numerical result.
177

178 179
    Examples:
        .. code-block:: python
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
195

196
    """
197

198 199
    def decorated(python_func):
        """
200
        Decorates a python function into a StaticFunction object.
201 202 203
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
204

205 206 207
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
208
            decorated_obj=StaticFunction(
209 210 211
                function=python_func, input_spec=input_spec))

        return static_layer
212

213 214
    # for usage: `declarative(foo, ...)`
    if function is not None:
215
        if isinstance(function, Layer):
216
            if isinstance(function.forward, StaticFunction):
217
                class_name = function.__class__.__name__
218
                logging_utils.warn(
219 220 221 222 223 224
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
225

226 227
    # for usage: `@declarative`
    return decorated
228 229


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


270
class _SaveLoadConfig(object):
271 272 273 274 275
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
276 277
        # used for `paddle.load`
        self._keep_name_table = False
278 279 280 281

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

282 283
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
284 285 286 287 288 289 290 291 292 293 294 295
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
296 297
        if spec is None:
            return
298 299
        if not isinstance(spec, list):
            raise TypeError(
300
                "The config `output_spec` should be 'list', but received input type is %s."
301 302 303 304
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
305
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
306 307 308 309 310 311 312 313 314
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
315 316
        if filename is None:
            return
317 318
        if not isinstance(filename, six.string_types):
            raise TypeError(
319
                "The config `model_filename` should be str, but received input's type is %s."
320 321
                % type(filename))
        if len(filename) == 0:
322
            raise ValueError("The config `model_filename` is empty string.")
323 324 325 326 327 328 329 330
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
331 332
        if filename is None:
            return
333 334
        if not isinstance(filename, six.string_types):
            raise TypeError(
335
                "The config `params_filename` should be str, but received input's type is %s."
336 337
                % type(filename))
        if len(filename) == 0:
338
            raise ValueError("The config `params_filename` is empty string.")
339 340
        self._params_filename = filename

341 342 343 344 345 346
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
347 348
        if value is None:
            return
349 350
        if not isinstance(value, bool):
            raise TypeError(
351
                "The config `keep_name_table` should be bool value, but received input's type is %s."
352 353 354
                % type(value))
        self._keep_name_table = value

355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
def _parse_save_configs(configs):
    supported_configs = ['output_spec']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


391 392 393 394 395 396 397 398 399 400
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
401 402 403
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
404 405
    if input_spec is None:
        # no prune
406 407 408 409 410 411 412 413 414
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
415 416
        # no prune
        result_list = input_var_names
417
        # if input spec name not in input_var_names, only raise warning
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
448
    for var in flatten(outputs):
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
510

511
    return model_path, config
512 513


514
@switch_to_static_graph
515
def save(layer, path, input_spec=None, **configs):
516
    """
517
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
518 519
    format model, which can be used for inference or fine-tuning after loading.

520
    It will save the translated program and all related persistable
521
    variables of input Layer to given ``path`` .
522 523

    ``path`` is the prefix of saved objects, and the saved translated program file
524
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
525
    and here also saved some additional variable description information to a file,
526
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
527 528

    The saved model can be loaded by follow APIs:
529 530
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
531 532
      - Other C++ inference APIs

533 534 535 536
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

537
    Args:
538
        layer (Layer|function): The Layer or function to be saved.
539
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
540 541 542
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
543
            the original Layer's forward method would be the inputs of the saved model. Default None.
544 545
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
546 547 548
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
549 550 551
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
552

553 554 555 556 557 558
    Returns:
        None

    Examples:
        .. code-block:: python

559
            # example 1: save layer
560
            import numpy as np
561 562 563
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
564

565 566 567
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
568

569 570 571 572 573 574 575
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
576

577 578 579 580
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
581

582 583
                def __len__(self):
                    return self.num_samples
584

585 586
            class LinearNet(nn.Layer):
                def __init__(self):
587
                    super(LinearNet, self).__init__()
588
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
589

590
                @paddle.jit.to_static
591 592 593
                def forward(self, x):
                    return self._linear(x)

594 595 596 597 598 599 600 601 602 603 604 605
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
606

607 608 609 610
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
611

612 613 614 615 616 617 618
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
619

620 621
            # train
            train(layer, loader, loss_fn, adam)
622

623
            # save
624 625
            path = "example_model/linear"
            paddle.jit.save(layer, path)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
648 649
    """

650
    # 1. input build & check
651
    prog_translator = ProgramTranslator()
652
    if not prog_translator.enable_to_static:
653
        raise RuntimeError(
654
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
655
        )
656 657 658

    if not (isinstance(layer, Layer) or inspect.isfunction(layer) or isinstance(
            layer, StaticFunction)):
659
        raise TypeError(
660
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
661 662
            % type(layer))

663 664
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
665
    # function_spec, so here we save DataParallel._layers instead
666 667 668 669 670 671 672
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

673 674 675 676 677 678 679 680 681 682 683
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
684

685 686
    # avoid change user given input_spec
    inner_input_spec = None
687
    if input_spec is not None:
688 689 690 691 692 693 694 695 696
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

697
        if not isinstance(input_spec, (list, tuple)):
698 699 700
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
701
        inner_input_spec = []
702
        for var in flatten(input_spec):
703 704 705 706 707 708
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
709 710
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
711

712 713
    # parse configs
    configs = _parse_save_configs(configs)
714 715
    scope = core.Scope()
    extra_var_info = dict()
716 717 718 719 720 721 722 723 724 725 726 727 728
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
    else:
        # layer is function
        functions = [layer, ]
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
                concrete_program = static_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
729
                # inner_input_spec is list[InputSpec], it should be packed with same structure
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_forward = declarative(
                    inner_layer.forward, input_spec=inner_input_spec)
                concrete_program = static_forward.concrete_program
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue

            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
            for structured_name, var in six.iteritems(inner_layer.state_dict()):
                state_names_dict[var.name] = structured_name

            # 3. share parameters from Layer to scope & record var info
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                param_or_buffer_tensor = scope.var(
                    param_or_buffer.name).get_tensor()
                src_tensor = param_or_buffer.value().get_tensor()
                param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
                            param_or_buffer.name]
                    extra_info_dict[
                        'stop_gradient'] = param_or_buffer.stop_gradient
                    if isinstance(param_or_buffer, ParamBase):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
770
        else:
771 772 773 774 775 776 777 778 779 780 781 782 783
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_function = declarative(
                    attr_func, input_spec=inner_input_spec)
                concrete_program = static_function.concrete_program

        # 4. build input & output of save_infernece_model
784 785 786 787 788 789 790 791 792 793 794 795
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
796 797
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
798 799 800 801 802 803 804 805 806 807
        # var name of output, and we don't recommended to use output_spec
        output_vars = _get_output_vars(concrete_program.outputs,
                                       configs.output_spec)

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
808
        # so we don't support set model_filename & params_filename
809
        if 'forward' == attr_func or not isinstance(layer, Layer):
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
                program_only=configs._program_only)

    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
835 836
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
837 838
    # configure redundant information to proceed.
    #
839 840
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
841 842
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
843 844 845 846 847
    if isinstance(layer, Layer) and extra_var_info:
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
848 849 850


@dygraph_only
851
def load(path, **configs):
852 853 854
    """
    :api_attr: imperative

855 856
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
857
    then performing inference or fine-tune training.
858 859

    .. note::
860
        If you load model saved by ``paddle.static.save_inference_model`` ,
861 862
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
863
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
864 865 866 867
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
868
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
869 870
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
871 872
            DO NOT use them. Default None.
            The following options are currently supported:
873 874 875 876
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
877 878
            by default.

879 880 881 882 883

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
884
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
885 886 887 888

        .. code-block:: python

            import numpy as np
889 890 891
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
892

893 894 895
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
896

897 898
            IMAGE_SIZE = 784
            CLASS_NUM = 10
899

900 901 902 903
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
904

905 906 907 908
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
909

910 911 912 913 914
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
915
                    super(LinearNet, self).__init__()
916
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
917

918
                @paddle.jit.to_static
919 920 921
                def forward(self, x):
                    return self._linear(x)

922 923 924 925 926 927 928 929 930 931 932
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

933
            # 1. train & save model.
934

935
            # create network
936 937 938 939
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

940
            # create data loader
941 942 943 944 945 946
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
947

948 949
            # train
            train(layer, loader, loss_fn, adam)
950

951
            # save
952 953
            path = "example_model/linear"
            paddle.jit.save(layer, path)
954

955
            # 2. load model
956

957
            # load
958
            loaded_layer = paddle.jit.load(path)
959 960

            # inference
961 962 963
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
964 965

            # fine-tune
966 967 968
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
969 970


971
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
972 973 974 975

        .. code-block:: python

            import numpy as np
976
            import paddle
977
            import paddle.static as static
978 979
            import paddle.nn as nn
            import paddle.optimizer as opt
980
            import paddle.nn.functional as F
981

982 983 984
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
985

986 987 988 989 990 991 992
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
993

994 995 996 997
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
998

999 1000
                def __len__(self):
                    return self.num_samples
1001

1002 1003
            paddle.enable_static()

1004 1005
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1006
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1007 1008
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1009

1010
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1011 1012
            optimizer.minimize(avg_loss)

1013 1014 1015
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1016

1017 1018 1019 1020 1021
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1022
                batch_size=BATCH_SIZE,
1023 1024 1025
                shuffle=True,
                drop_last=True,
                num_workers=2)
1026 1027 1028 1029

            # 1. train and save inference model
            for data in loader():
                exe.run(
1030
                    static.default_main_program(),
1031
                    feed=data,
1032 1033 1034
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1035
            paddle.fluid.io.save_inference_model(
1036 1037 1038
                model_path, ["image"], [pred], exe)

            # 2. load model
1039 1040

            # enable dygraph mode
1041 1042 1043 1044
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1045

1046 1047 1048
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1049 1050
            pred = fc(x)

1051
            # fine-tune
1052
            fc.train()
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1070
    """
1071 1072 1073 1074
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1075
    return TranslatedLayer._construct(model_path, config)
1076 1077


1078
@dygraph_only
Z
Zeng Jinle 已提交
1079 1080 1081 1082 1083
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1084
    assert isinstance(layer, Layer)
1085 1086 1087 1088 1089 1090 1091 1092 1093

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1094
        original_outputs = layer(*inputs)
1095 1096 1097 1098
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1099
        out_vars = extract_vars(outputs, err_tag='outputs')
1100

1101
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1102
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1103 1104 1105 1106 1107
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1108
    return original_outputs, program, feed_names, fetch_names, parameters
1109 1110 1111 1112


class TracedLayer(object):
    """
1113
    :api_attr: imperative
1114

1115 1116 1117 1118 1119
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1120 1121 1122 1123

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1124 1125

    All TracedLayer objects should not be created by constructor and should
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1137
        self._params = parameters
1138 1139 1140 1141 1142

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1143
            src_tensor = p.value().get_tensor()
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1167
        This method is the only allowed method to create TracedLayer object.
1168 1169 1170 1171
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1172
            layer (paddle.nn.Layer): the layer object to be traced.
1173 1174
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1175 1176

        Returns:
1177
            tuple: A tuple of 2 items, whose the first item is the output of
1178 1179
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1180

1181
        Examples:
1182 1183
            .. code-block:: python:

1184
                import paddle
1185

1186
                class ExampleLayer(paddle.nn.Layer):
1187 1188
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1189
                        self._fc = paddle.nn.Linear(3, 10)
1190 1191 1192 1193

                    def forward(self, input):
                        return self._fc(input)

1194

1195 1196 1197 1198 1199 1200
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1201

1202 1203
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1204

1205 1206
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1207

1208
        """
1209 1210 1211 1212
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1213 1214
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1215 1216 1217 1218 1219 1220 1221
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1222
            build_strategy (BuildStrategy, optional): build strategy of
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1233
                import paddle
1234

1235
                class ExampleLayer(paddle.nn.Layer):
1236 1237
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1238
                        self._fc = paddle.nn.Linear(3, 10)
1239 1240 1241 1242

                    def forward(self, input):
                        return self._fc(input)

1243 1244 1245 1246
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1247

1248 1249
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1250

1251 1252
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1253

1254 1255
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1256 1257 1258

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1259 1260 1261 1262 1263 1264 1265 1266
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1285
                feed_dict[name] = x.value().get_tensor()
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1306
    def save_inference_model(self, path, feed=None, fetch=None):
1307
        """
1308 1309
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1310

1311 1312 1313
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1314
        Args:
1315
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1316
            feed (list[int], optional): the input variable indices of the saved
1317
                inference model. If None, all input variables of the
1318 1319 1320 1321 1322 1323 1324 1325
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1326
            None
1327 1328 1329 1330 1331

        Examples:
            .. code-block:: python:

                import numpy as np
1332
                import paddle
1333

1334
                class ExampleLayer(paddle.nn.Layer):
1335 1336
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1337
                        self._fc = paddle.nn.Linear(3, 10)
1338 1339 1340 1341

                    def forward(self, input):
                        return self._fc(input)

1342 1343
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1344 1345
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1346

1347 1348
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1349

1350 1351 1352 1353
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1354
                                                    exe)
1355 1356 1357

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1358
        """
1359
        check_type(path, "path", str,
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1386
        from paddle.fluid.io import save_inference_model
1387 1388 1389 1390 1391

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1392
            return [all_vars[idx] for idx in partial_vars]
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1403 1404 1405
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1406
            save_inference_model(
1407 1408 1409 1410
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
1411 1412 1413
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename)