jit.py 64.6 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
from __future__ import print_function

18 19
import os
import pickle
20
import warnings
21
import functools
22
from collections import OrderedDict
23
import inspect
M
Ming-Xu Huang 已提交
24
import threading
25
from typing import Text, Tuple, Any, List
26 27

import six
28
import paddle
J
Jiabin Yang 已提交
29
from paddle.fluid import core, dygraph
30 31
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
32
from paddle.fluid.layers.utils import flatten, pack_sequence_as
33
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
34
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
35
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
36
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
37
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
38
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX, INFER_PROPERTY_SUFFIX
39 40
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
0
0x45f 已提交
41
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter, EagerParamBase
42
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
J
Jiabin Yang 已提交
43
from paddle.fluid.framework import dygraph_only, _non_static_mode
44
from paddle.fluid.wrapped_decorator import wrap_decorator
45

46 47
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
48
    'set_verbosity', 'save', 'load', 'not_to_static'
49
]
50 51 52 53 54 55 56 57 58 59


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


60
def _extract_vars(inputs, result_list, err_tag='inputs'):
61
    if isinstance(inputs, Variable):
62
        result_list.append(inputs)
63
    elif isinstance(inputs, (list, tuple)):
64
        for var in inputs:
65
            _extract_vars(var, result_list, err_tag)
66 67
    else:
        raise TypeError(
68 69
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
            .format(err_tag, type(inputs)))
70 71


72
def extract_vars(inputs, err_tag='inputs'):
73
    result_list = []
74
    _extract_vars(inputs, result_list, err_tag)
75 76 77
    return result_list


78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
107
              if paddle.mean(x) < 0:
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
127 128
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
129
        if _non_static_mode() or not program_translator.enable_to_static:
130
            logging_utils.warn(
131
                "The decorator 'dygraph_to_static_func' doesn't work in "
132
                "dygraph mode or set ProgramTranslator.enable to False. "
133 134 135 136
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
137 138 139 140

    return __impl__


141
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
142

143

144 145 146 147 148 149
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
150
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


164 165 166 167
def declarative(function=None,
                input_spec=None,
                build_strategy=None,
                property=False):
168 169 170
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
171 172 173 174
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
175

176
    Args:
177
        function (callable): callable imperative function.
178
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
179
            information of each input Tensor.
180 181 182 183 184
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
185
        property(bool, Optional): whether the fucntion is python property. The default is False.
186

187

188
    Returns:
189
        Tensor(s): containing the numerical result.
190

191 192
    Examples:
        .. code-block:: python
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
208

209
    """
210

211 212
    def decorated(python_func):
        """
213
        Decorates a python function into a StaticFunction object.
214 215 216
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
217

218
        # Step 2. copy some attributes from original python function.
219 220 221 222
        static_layer = copy_decorator_attrs(original_func=python_func,
                                            decorated_obj=StaticFunction(
                                                function=python_func,
                                                input_spec=input_spec,
223 224
                                                build_strategy=build_strategy,
                                                property=property))
225 226

        return static_layer
227

228 229 230
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
231 232
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}"
            .format(type(build_strategy).__name__))
233

234 235
    # for usage: `declarative(foo, ...)`
    if function is not None:
236
        if isinstance(function, Layer):
237
            if isinstance(function.forward, StaticFunction):
238
                class_name = function.__class__.__name__
239
                logging_utils.warn(
240 241
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one."
                    .format(class_name))
242 243 244 245
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
246

247 248
    # for usage: `@declarative`
    return decorated
249 250


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


291
class _SaveLoadConfig(object):
292

293 294 295 296 297
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
298 299
        # used for `paddle.load`
        self._keep_name_table = False
300 301 302 303

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

304 305
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
306 307 308 309 310
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
311
        self.with_hook = False
312

313 314 315
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

316 317 318 319 320 321
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
322 323
        if spec is None:
            return
324 325
        if not isinstance(spec, list):
            raise TypeError(
326
                "The config `output_spec` should be 'list', but received input type is %s."
327 328 329 330
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
331
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
332 333 334 335 336 337 338 339 340
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
341 342
        if filename is None:
            return
343 344
        if not isinstance(filename, six.string_types):
            raise TypeError(
345
                "The config `model_filename` should be str, but received input's type is %s."
346 347
                % type(filename))
        if len(filename) == 0:
348
            raise ValueError("The config `model_filename` is empty string.")
349 350 351 352 353 354 355 356
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
357 358
        if filename is None:
            return
359 360
        if not isinstance(filename, six.string_types):
            raise TypeError(
361
                "The config `params_filename` should be str, but received input's type is %s."
362 363
                % type(filename))
        if len(filename) == 0:
364
            raise ValueError("The config `params_filename` is empty string.")
365 366
        self._params_filename = filename

367 368 369 370 371 372
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
373 374
        if value is None:
            return
375 376
        if not isinstance(value, bool):
            raise TypeError(
377
                "The config `keep_name_table` should be bool value, but received input's type is %s."
378 379 380
                % type(value))
        self._keep_name_table = value

381

382
def _parse_save_configs(configs):
383 384 385
    supported_configs = [
        'output_spec', "with_hook", "combine_params", "clip_extra"
    ]
386 387 388 389 390 391 392 393 394 395 396

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
397
    inner_config.with_hook = configs.get('with_hook', False)
398 399
    inner_config.combine_params = configs.get("combine_params", False)
    inner_config.clip_extra = configs.get("clip_extra", False)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


422 423 424 425 426 427 428 429 430 431
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
432 433 434
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
435 436
    if input_spec is None:
        # no prune
437 438 439 440 441 442 443 444 445
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
446 447
        # no prune
        result_list = input_var_names
448
        # if input spec name not in input_var_names, only raise warning
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


472
def _get_output_vars(outputs, output_spec, with_hook=False):
473 474 475 476
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
477 478 479 480
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
481 482
    result_list = []
    output_vars_dict = OrderedDict()
483
    for var in flatten(outputs):
484 485 486
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
487
        result_list = list(output_vars_dict.values())
488
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
489
        result_list = list(output_vars_dict.values())
490 491 492 493 494 495 496 497 498 499 500 501
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
545

546
    return model_path, config
547 548


M
Ming-Xu Huang 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


def _run_save_pre_hooks(func):
638

M
Ming-Xu Huang 已提交
639 640 641 642 643 644 645 646 647
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
def _save_property(filename: Text, property_vals: List[Tuple[Any, Text]]):
    """class property serialization.

    Args:
        filename (Text): *.meta
        property_vals (List[Tuple): class property.
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
682
@_run_save_pre_hooks
683
@switch_to_static_graph
684
def save(layer, path, input_spec=None, **configs):
685
    """
686
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
687 688
    format model, which can be used for inference or fine-tuning after loading.

689
    It will save the translated program and all related persistable
690
    variables of input Layer to given ``path`` .
691 692

    ``path`` is the prefix of saved objects, and the saved translated program file
693
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
694
    and here also saved some additional variable description information to a file,
695
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
696 697

    The saved model can be loaded by follow APIs:
698 699
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
700 701
      - Other C++ inference APIs

702 703 704 705
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

706
    Args:
707
        layer (Layer|function): The Layer or function to be saved.
708
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
709 710 711
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
712
            the original Layer's forward method would be the inputs of the saved model. Default None.
713 714
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
715 716 717
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
718 719 720
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
721

722 723 724 725 726 727
    Returns:
        None

    Examples:
        .. code-block:: python

728
            # example 1: save layer
729
            import numpy as np
730 731 732
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
733

734 735 736
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
737

738 739 740 741 742 743 744
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
745

746 747 748 749
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
750

751 752
                def __len__(self):
                    return self.num_samples
753

754 755
            class LinearNet(nn.Layer):
                def __init__(self):
756
                    super(LinearNet, self).__init__()
757
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
758

759
                @paddle.jit.to_static
760 761 762
                def forward(self, x):
                    return self._linear(x)

763 764 765 766 767 768 769 770 771 772 773 774
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
775

776 777 778 779
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
780

781 782 783 784 785 786 787
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
788

789 790
            # train
            train(layer, loader, loss_fn, adam)
791

792
            # save
793 794
            path = "example_model/linear"
            paddle.jit.save(layer, path)
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
817 818
    """

819
    # 1. input build & check
820
    prog_translator = ProgramTranslator()
821
    if not prog_translator.enable_to_static:
822
        raise RuntimeError(
823
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
824
        )
825

826 827
    if not (isinstance(layer, Layer) or inspect.isfunction(layer)
            or isinstance(layer, StaticFunction)):
828
        raise TypeError(
829
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
830
            % type(layer))
831 832 833 834
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
835

836 837
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
838
    # function_spec, so here we save DataParallel._layers instead
839 840 841 842 843 844 845
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

846 847 848 849 850 851 852 853 854 855 856
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
857

858 859
    # avoid change user given input_spec
    inner_input_spec = None
860
    if input_spec is not None:
861 862 863 864 865 866 867 868 869
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

870
        if not isinstance(input_spec, (list, tuple)):
871 872 873
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
874
        inner_input_spec = []
875
        for var in flatten(input_spec):
876 877
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
878
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
879 880 881
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
882 883
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
884

885 886
    # parse configs
    configs = _parse_save_configs(configs)
887
    # whether outermost layer has pre/post hook, if does, we need also save
888
    # these operators in program.
889
    with_hook = configs.with_hook
890 891 892
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
893

894 895
    scope = core.Scope()
    extra_var_info = dict()
896 897
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
898 899
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
900 901
    else:
        # layer is function
902 903 904
        functions = [
            layer,
        ]
905

906
    combine_vars = {}
907
    property_vals = []  # (value, key)
908 909 910 911
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
912 913 914 915 916 917 918 919
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
                        (immediate_val,
                         layer.__class__.__name__ + '.' + attr_func))
                    continue

920
                concrete_program = static_func.concrete_program_specify_input_spec(
921
                    inner_input_spec, with_hook=with_hook)
922 923
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
924
                # inner_input_spec is list[InputSpec], it should be packed with same structure
925 926 927 928
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
929 930
                static_forward = declarative(inner_layer.forward,
                                             input_spec=inner_input_spec)
931 932
                concrete_program = static_forward.concrete_program_specify_input_spec(
                    with_hook=with_hook)
933 934 935 936 937 938
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
939 940 941
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
942 943 944 945 946 947
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

948 949 950 951 952 953
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
954 955
                static_function = declarative(attr_func,
                                              input_spec=inner_input_spec)
956 957 958 959
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
960 961
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'
                        .format(layer))
962

963
        # when save multi `StaticFunction`, all `StaticFunction` share params.
964 965
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
966
            dygraph_state_dict = inner_layer.to_static_state_dict()
967 968
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
969 970
                dygraph_state_dict = attr_func._class_instance.to_static_state_dict(
                )
971 972

        if dygraph_state_dict:
973 974 975 976 977
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
978
            state_var_dict = dict()
979
            for structured_name, var in six.iteritems(dygraph_state_dict):
980
                state_names_dict[var.name] = structured_name
981
                state_var_dict[var.name] = var
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
                        param_or_buffer.name).get_tensor()
                    #src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = state_var_dict[
                        param_or_buffer.name].value().get_tensor()
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
                            param_or_buffer.name]
                    extra_info_dict[
                        'stop_gradient'] = param_or_buffer.stop_gradient
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1009 1010

        # 4. build input & output of save_infernece_model
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
1023 1024
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
1025
        # var name of output, and we don't recommended to use output_spec
1026 1027
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1028
        output_vars = _get_output_vars(concrete_program.outputs,
1029
                                       configs.output_spec, with_hook)
1030 1031 1032 1033 1034 1035 1036

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1037
        # so we don't support set model_filename & params_filename
1038
        if 'forward' == attr_func or not isinstance(layer, Layer):
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1055
                program_only=configs._program_only,
1056
                clip_extra=configs.clip_extra)
1057

1058 1059 1060 1061 1062 1063
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
                input_var_names, output_vars)
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1064 1065 1066

    # save shared params
    if combine_params:
1067 1068 1069 1070 1071 1072
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1073 1074 1075 1076 1077 1078
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
            paddle.static.save_vars(Executor(_current_expected_place()),
                                    dirname=model_path,
                                    vars=list(
                                        filter(paddle.fluid.io.is_persistable,
1079
                                               ordered_vars)),
1080
                                    filename=params_filename)
1081 1082 1083
        # save property
        property_filename = file_prefix + INFER_PROPERTY_SUFFIX
        _save_property(property_filename, property_vals)
1084

1085 1086 1087 1088 1089 1090 1091
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1092 1093
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1094 1095
    # configure redundant information to proceed.
    #
1096 1097
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1098 1099
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1100 1101 1102 1103 1104 1105 1106 1107

    # "layer" can only be Layer or function or StaticFunction.

    contain_parameter = False
    for var in concrete_program.main_program.list_vars():
        contain_parameter |= isinstance(var, Parameter)

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1108 1109 1110 1111
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1112 1113 1114


@dygraph_only
1115
def load(path, **configs):
1116 1117 1118
    """
    :api_attr: imperative

1119 1120
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1121
    then performing inference or fine-tune training.
1122 1123

    .. note::
1124
        If you load model saved by ``paddle.static.save_inference_model`` ,
1125 1126
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1127
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1128 1129 1130 1131
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1132
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1133 1134
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1135 1136
            DO NOT use them. Default None.
            The following options are currently supported:
1137 1138 1139 1140
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1141 1142
            by default.

1143 1144 1145 1146 1147

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1148
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1149 1150 1151 1152

        .. code-block:: python

            import numpy as np
1153 1154 1155
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1156

1157 1158 1159
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1160

1161 1162
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1163

1164 1165 1166 1167
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1168

1169 1170 1171 1172
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1173

1174 1175 1176 1177 1178
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1179
                    super(LinearNet, self).__init__()
1180
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1181

1182
                @paddle.jit.to_static
1183 1184 1185
                def forward(self, x):
                    return self._linear(x)

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1197
            # 1. train & save model.
1198

1199
            # create network
1200 1201 1202 1203
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1204
            # create data loader
1205 1206 1207 1208 1209 1210
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1211

1212 1213
            # train
            train(layer, loader, loss_fn, adam)
1214

1215
            # save
1216 1217
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1218

1219
            # 2. load model
1220

1221
            # load
1222
            loaded_layer = paddle.jit.load(path)
1223 1224

            # inference
1225 1226 1227
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1228 1229

            # fine-tune
1230 1231 1232
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1233 1234


1235
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1236 1237 1238 1239

        .. code-block:: python

            import numpy as np
1240
            import paddle
1241
            import paddle.static as static
1242 1243
            import paddle.nn as nn
            import paddle.optimizer as opt
1244
            import paddle.nn.functional as F
1245

1246 1247 1248
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1249

1250 1251 1252 1253 1254 1255 1256
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1257

1258 1259 1260 1261
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1262

1263 1264
                def __len__(self):
                    return self.num_samples
1265

1266 1267
            paddle.enable_static()

1268 1269
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1270
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1271 1272
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1273

1274
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1275 1276
            optimizer.minimize(avg_loss)

1277 1278 1279
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1280

1281 1282 1283 1284 1285
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1286
                batch_size=BATCH_SIZE,
1287 1288
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1289
                return_list=False,
1290
                num_workers=2)
1291 1292 1293 1294

            # 1. train and save inference model
            for data in loader():
                exe.run(
1295
                    static.default_main_program(),
1296
                    feed=data,
1297 1298 1299
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1300
            paddle.fluid.io.save_inference_model(
1301 1302 1303
                model_path, ["image"], [pred], exe)

            # 2. load model
1304 1305

            # enable dygraph mode
1306 1307 1308 1309
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1310

1311 1312 1313
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1314 1315
            pred = fc(x)

1316
            # fine-tune
1317
            fc.train()
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1335
    """
1336 1337 1338 1339
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1340
    return TranslatedLayer._construct(model_path, config)
1341 1342


1343
@dygraph_only
Z
Zeng Jinle 已提交
1344 1345 1346 1347 1348
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1349
    assert isinstance(layer, Layer)
1350 1351 1352 1353 1354 1355 1356 1357 1358

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1359
        original_outputs = layer(*inputs)
1360 1361 1362 1363
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1364
        out_vars = extract_vars(outputs, err_tag='outputs')
1365

1366
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1367
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1368 1369 1370 1371 1372
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1373
    return original_outputs, program, feed_names, fetch_names, parameters
1374 1375 1376 1377


class TracedLayer(object):
    """
1378
    :api_attr: imperative
1379

1380 1381 1382 1383 1384
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1385 1386 1387 1388

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1389 1390

    All TracedLayer objects should not be created by constructor and should
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1402
        self._params = parameters
1403 1404 1405 1406 1407

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1408
            src_tensor = p.value().get_tensor()
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1432
        This method is the only allowed method to create TracedLayer object.
1433 1434 1435 1436
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1437
            layer (paddle.nn.Layer): the layer object to be traced.
1438 1439
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1440 1441

        Returns:
1442
            tuple: A tuple of 2 items, whose the first item is the output of
1443 1444
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1445

1446
        Examples:
1447 1448
            .. code-block:: python:

1449
                import paddle
1450

1451
                class ExampleLayer(paddle.nn.Layer):
1452 1453
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1454
                        self._fc = paddle.nn.Linear(3, 10)
1455 1456 1457 1458

                    def forward(self, input):
                        return self._fc(input)

1459

1460 1461 1462 1463 1464 1465
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1466

1467 1468
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1469

1470 1471
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1472

1473
        """
1474 1475 1476 1477
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1478 1479
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1480 1481 1482 1483 1484 1485 1486
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1487
            build_strategy (BuildStrategy, optional): build strategy of
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1498
                import paddle
1499

1500
                class ExampleLayer(paddle.nn.Layer):
1501 1502
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1503
                        self._fc = paddle.nn.Linear(3, 10)
1504 1505 1506 1507

                    def forward(self, input):
                        return self._fc(input)

1508 1509 1510 1511
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1512

1513 1514
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1515

1516 1517
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1518

1519 1520
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1521 1522 1523

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1524 1525 1526 1527 1528 1529 1530 1531
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1548
        if _non_static_mode():
1549
            for x, name in zip(inputs, self._feed_names):
1550
                feed_dict[name] = x.value().get_tensor()
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1571
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1572
        """
1573 1574
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1575

1576 1577 1578
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1579
        Args:
1580
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1581
            feed (list[int], optional): the input variable indices of the saved
1582
                inference model. If None, all input variables of the
1583 1584 1585 1586 1587 1588
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1589
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1590 1591

        Returns:
1592
            None
1593 1594 1595 1596 1597

        Examples:
            .. code-block:: python:

                import numpy as np
1598
                import paddle
1599

1600
                class ExampleLayer(paddle.nn.Layer):
1601 1602
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1603
                        self._fc = paddle.nn.Linear(3, 10)
1604 1605 1606 1607

                    def forward(self, input):
                        return self._fc(input)

1608 1609
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1610 1611
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1612

1613 1614
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1615

1616 1617 1618 1619
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1620
                                                    exe)
1621 1622 1623

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1624
        """
1625
        check_type(path, "path", str,
1626 1627 1628 1629 1630
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
1631 1632 1633
                check_type(
                    f, "each element of feed", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1634 1635 1636 1637
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
1638 1639 1640
                check_type(
                    f, "each element of fetch", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1641
        clip_extra = kwargs.get('clip_extra', False)
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1654
        from paddle.fluid.io import save_inference_model
1655 1656 1657 1658 1659

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1660
            return [all_vars[idx] for idx in partial_vars]
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1671 1672 1673
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1674 1675 1676 1677 1678 1679 1680 1681
            save_inference_model(dirname=dirname,
                                 feeded_var_names=feeded_var_names,
                                 target_vars=target_vars,
                                 executor=self._exe,
                                 main_program=self._program.clone(),
                                 model_filename=model_filename,
                                 params_filename=params_filename,
                                 clip_extra=clip_extra)