parallel_executor.cc 60.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

Q
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
25
#include "paddle/fluid/framework/details/bind_threaded_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/framework/details/multi_devices_helper.h"
28
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
33
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
34
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
35
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
36
#include "paddle/fluid/framework/variable_helper.h"
W
wangchaochaohu 已提交
37
#include "paddle/fluid/platform/event.h"
38
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
39

40
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
41 42 43
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

44 45
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
50 51
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
52
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
53
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
54

Y
Yang Yang 已提交
55
namespace paddle {
Y
Yu Yang 已提交
56 57
namespace framework {

Y
Yu Yang 已提交
58
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
59
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
60
static bool gProfileStarted = false;
Y
Yu Yang 已提交
61
#endif
62

63
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
64 65 66
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
67 68
class ParallelExecutorPrivate {
 public:
69 70 71
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
72
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
73 74
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
75
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
76 77 78
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
79
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
80 81 82 83
#endif
      });
    }
  }
Y
Yu Yang 已提交
84

85 86 87 88 89 90 91 92 93 94 95
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
96

97
  bool IsUseCUDA(DeviceType use_device);
98

99 100 101 102
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

103
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
104 105 106

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

107
  /**
T
tianshuo78520a 已提交
108 109
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
110 111 112 113 114 115
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
116
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
117 118
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
119
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
120 121 122 123
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
124 125 126 127 128
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
129 130 131 132 133 134
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

135
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
152 153
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
154 155 156 157 158 159 160 161 162 163 164 165
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
166
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
167 168
      } else {
        nccl_id = new ncclUniqueId();
169 170
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
171 172 173
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
174 175
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
176 177 178 179
      }

      flat_nccl_ids.push_back(nccl_id);

180 181
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
182 183 184 185 186 187
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
188 189
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
190 191 192 193 194 195
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
196 197 198
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
199 200 201 202
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

203 204
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
205 206

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
207 208 209 210
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
211 212 213
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
214 215 216
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
217 218 219 220 221

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
222 223 224
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
225 226 227
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
228

229 230 231 232
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
233 234
    }
  }
235

236
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
237 238 239
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
240 241 242
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
243 244 245 246 247 248
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

249
    if (bst->use_hierarchical_allreduce_) {
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
265 266 267 268 269

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

270 271
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
272
    InitNCCLCtxs(scope, *bst);
273
  }
274 275
#endif

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_, false,
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
            bkcl_get_unique_id(id.get()), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

    bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                             bst.trainer_id_);
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

360 361 362 363 364
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
365
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
366 367
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
368
  std::vector<Scope *> local_exec_scopes_;
369
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
370
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
371

372 373
  std::unordered_map<std::string, bool> is_persistable_;

374
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
375
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
376 377
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
378
#endif
C
chengduoZH 已提交
379
  bool own_local_scope_;
380
  DeviceType use_device_;
381
  bool use_all_reduce_;
382
  size_t nranks_;
S
sneaxiy 已提交
383

384
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
385
  ir::GarbageCollectorMap gcs_;
386 387

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
388 389
};

390 391
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
392 393
}

394 395 396 397 398 399 400 401 402 403
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

404
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
421
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
422 423 424 425
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

426 427 428 429 430 431 432 433
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

434 435 436 437
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
438
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
439 440 441 442 443
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

444 445 446 447 448
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
449
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
450 451 452
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
453 454
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
455 456
  }

457
  if (build_strategy_.memory_optimize_.get()) {
458 459 460 461 462 463
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
464
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
465
                                    new bool(use_device_ == p::kCUDA));
466 467 468
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
469 470 471
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
472
  }
473

474
  if (!is_gc_enabled) {
475 476 477 478
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
479 480 481 482 483
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
484
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
485
    if (platform::is_gpu_place(place)) {
486
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
487
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
488
        gc.reset(new UnsafeFastGPUGarbageCollector(
489
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
490
      } else {
S
sneaxiy 已提交
491
        gc.reset(new StreamGarbageCollector(
492
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
493 494
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
495 496 497 498
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
499
#endif
500 501 502 503 504 505 506 507 508
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
      gc.reset(new XPUGarbageCollector(
          BOOST_GET_CONST(platform::XPUPlace, place), max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
S
sneaxiy 已提交
509
#endif
510 511 512 513 514 515 516 517
    } else if (platform::is_cpu_place(place)) {
      gc.reset(new CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
518
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
519 520
  }

S
sneaxiy 已提交
521
  if (!gcs_.empty()) {
S
sneaxiy 已提交
522 523
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
524 525
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
526 527
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
528
                                     &last_live_ops_of_vars);
529
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
530
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
531
    VLOG(10) << "EagerDeletionPass Applied";
532 533 534
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
535 536 537 538
  }
  return graph;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

554 555
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

556 557 558 559
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

574
void InitP2P(const std::vector<platform::Place> &places) {
575
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
      if (!is_gpu_place(places[i])) return;

      platform::CUDAPlace device =
          BOOST_GET_CONST(platform::CUDAPlace, places[i]);
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
593 594 595 596 597
#ifdef PADDLE_WITH_HIP
        hipError_t ret =
            hipDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != hipSuccess || can_acess != 1) {
#else
598 599 600
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
601
#endif
602 603 604 605
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
606 607 608
#ifdef PADDLE_WITH_HIP
          hipDeviceEnablePeerAccess(devices[j], 0);
#else
609
          cudaDeviceEnablePeerAccess(devices[j], 0);
610
#endif
611 612 613 614 615 616 617 618
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
619 620 621 622 623 624 625 626
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
627
    : member_(new ParallelExecutorPrivate(places, scope)) {
628 629 630
  PADDLE_ENFORCE(places.size() > 0 && !is_npu_place(places[0]),
                 platform::errors::Unavailable(
                     "NPU is not supported in ParallelExecutor"));
631
  InitP2P(places);
632 633
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
634 635 636
  // Initialize necessary info of member_ with strategy.
  InitExecutorPrivateMemberInfo(exec_strategy, build_strategy, places.size(),
                                *graph);
Y
Yancey1989 已提交
637

638 639 640 641
  // Step 1. Create local scopes and Clone graph into multi device
  CreateLocalScopes(scope, local_scopes, /*create_new*/ true);
  std::vector<ir::Graph *> graphs = CloneGraphToMultiDevices(graph);
  PrepareNCCLCommunicator(scope);
642

Y
Yan Xu 已提交
643 644
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
645
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
646 647 648 649 650 651 652 653 654 655
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
  if (need_broadcast()) {
C
chengduo 已提交
656
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
657
  }
658

Q
Qiao Longfei 已提交
659 660
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
661 662
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, loss_var_name);
663
  graph = member_->ApplyMemoryOptimizePass(graph);
Q
Qiao Longfei 已提交
664 665
  async_graphs[0] = graph;

666 667
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
668
  std::vector<details::VariableInfo> var_infos;
669 670 671
  CreateVariableInfos(&var_infos, graph);
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new*/ true);
672

673 674 675
  // Step 4. Create SSAGraph executor
  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);
676

677 678 679 680 681
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
  if (!member_->build_strategy_.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
682 683
  }

684 685 686
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
  SetReaderOpDeviceInfoOfGraphs(final_graphs);
}
687

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
ParallelExecutor::ParallelExecutor(const platform::Place &place, Scope *scope,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
    : member_(new ParallelExecutorPrivate({place}, scope)) {
  // Initialize necessary info of member_ with strategy.
  InitExecutorPrivateMemberInfo(exec_strategy, build_strategy,
                                /*device_count=*/1, *graph);

  CreateLocalScopes(scope, /*local_scope=*/{scope}, /*create_new=*/false);

  // Apply BuildStrategy to compile graph.
  std::vector<ir::Graph *> graphs = {graph};
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, /*loss_var_name=*/"");

  graph = member_->ApplyMemoryOptimizePass(graph);

  // Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  CreateVariableInfos(&var_infos_, graph);

  // Create local execution scopes
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new=*/false);

  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);

  // Set scope_map of op from each graph
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
}

void ParallelExecutor::PrepareVariables(Scope *scope) {
  for (auto &info : var_infos_) {
    auto var = scope->FindVar(info.name_);
    if (var != nullptr) {
      VLOG(2) << info.name_
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(info.name_), info.type_);
  }
}

733 734 735 736 737 738 739 740 741
void ParallelExecutor::BCastParamsToDevices(
    const std::vector<std::string> &vars, int trainer_id) const {
  VLOG(3) << "BCastParamsToDevices";
  // the initializing bcast, all vars would be bcast from device(0).
  for (auto &var : vars) {
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
      continue;
    }
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    auto &main_tensor = main_var->Get<LoDTensor>();
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
758

759 760 761 762 763 764 765 766 767 768
        if (i == 0 && trainer_id == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }
        buffers.push_back(buffer);
      }
769

770
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
771 772 773 774
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
775
      {
776
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
777 778
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
779
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
780 781
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
782
        }
783
        nccl_ctxs->WaitAll();
784
      }
785 786 787 788 789 790
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
791 792 793 794 795
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
      BKCLDataType data_type = BKCL_FLOAT;
      // BKCLDataType data_type = platform::ToBKCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }
        buffers.push_back(buffer);
      }

      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
            bkcl_group_start(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
826
          auto broadcast_numel = numel;
827
          if (main_tensor.type() == framework::proto::VarType::INT64) {
828
            broadcast_numel *= 2;
829 830
          }
          PADDLE_ENFORCE_EQ(
831 832
              bkcl_broadcast(bkcl_ctx.comm(), buffers[i], buffers[i],
                             broadcast_numel, data_type, 0, NULL),
833 834 835 836 837 838 839 840 841 842
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
            bkcl_group_end(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
843
#endif
844 845
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
846
      for (size_t i = 1; i < member_->places_.size(); ++i) {
847 848
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
849

Q
Qiao Longfei 已提交
850
        auto copy_memory = [&] {
851 852 853
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
854 855
        };

Q
Qiao Longfei 已提交
856
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
857 858 859 860

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
861 862
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
863 864
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
865
        } else {
Q
can run  
Qiao Longfei 已提交
866
          share_memory();
867
        }
Y
Yu Yang 已提交
868
      }
Y
Stash  
Yu Yang 已提交
869 870
    }
  }
Y
Yu Yang 已提交
871
}
Y
Yu Yang 已提交
872

Z
Zhen Wang 已提交
873 874
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
875
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
876 877 878
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
879 880
  }
#endif
Y
Yu Yang 已提交
881

X
Xin Pan 已提交
882
  platform::RecordBlock b(0);
883

884 885
  ResetHasFeedGuard reset_has_feed_guard(member_);

886 887
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
888 889

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
890
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
891
  return fetch_data;
Y
Yu Yang 已提交
892
}
Y
Yu Yang 已提交
893

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
void ParallelExecutor::RunWithoutFetch(
    const std::vector<std::string> &skip_eager_vars) {
  VLOG(3) << "enter ParallelExecutor RunWithoutFetch";
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
  platform::RecordBlock b(0);

  ResetHasFeedGuard reset_has_feed_guard(member_);

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), skip_eager_vars,
                                member_->HasGarbageCollectors());

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  member_->executor_->Run(/*fetch_tensors*/ {}, /*return_merged*/ false);
}

void ParallelExecutor::SkipMemoryReuse(
    size_t scope_idx, const std::vector<std::string> &skip_vars) {
  for (auto &var_name : skip_vars) {
    bool is_persistable = member_->IsPersistable(var_name);
    if (!is_persistable) {
      VLOG(3) << "SkipMemoryReuse for var: " << var_name;
      member_->SetSkipMemoryReuse(scope_idx, var_name);
    }
  }
}

Y
Yu Yang 已提交
924 925
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
941

942
  size_t feed_num = 0;
Y
Yu Yang 已提交
943 944
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
945 946 947 948 949 950
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
951
    for (auto &pair : map) {
952
      bool is_persistable = member_->IsPersistable(pair.first);
953 954 955
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
956 957 958 959 960
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
961 962 963 964
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
965 966 967 968 969 970 971 972 973 974 975 976

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
977 978 979 980
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
981
  size_t num_places = member_->places_.size();
982 983 984 985 986
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

987
  for (auto &pair : tensors) {
988 989 990 991
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
992
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
993
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
994 995
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
996
      auto error_info = string::Sprintf(
997 998 999
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
1000 1001 1002 1003 1004 1005
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1006
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1007 1008 1009 1010
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1011 1012 1013 1014 1015 1016
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
1017 1018 1019 1020 1021 1022
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1023
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1024 1025 1026 1027 1028 1029 1030 1031 1032
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
1033
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1034
      }
C
chengduo 已提交
1035
    }
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1062 1063 1064 1065 1066
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1067 1068
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1069 1070
    }
  }
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1087 1088
}

X
Xin Pan 已提交
1089 1090 1091 1092 1093 1094 1095
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1096
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1097
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1098
    const BuildStrategy &build_strategy) const {
1099 1100 1101
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1102

Y
Yancey1989 已提交
1103
  bool enable_parallel_graph = true;
1104

X
Xin Pan 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1118 1119 1120
    }
  }

1121
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1122
    if (build_strategy.enable_sequential_execution_ ||
1123
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1124
      enable_parallel_graph = false;
1125 1126 1127 1128 1129 1130 1131 1132 1133
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1134
  return enable_parallel_graph;
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
void ParallelExecutor::InitExecutorPrivateMemberInfo(
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
    size_t device_count, const ir::Graph &graph) {
  member_->use_device_ = exec_strategy.use_device_;
  member_->build_strategy_ = build_strategy;
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
  member_->nranks_ = build_strategy.num_trainers_ * device_count;
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && defined(_WIN32)
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        device_count, 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
  }
#endif

#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    (!defined(PADDLE_WITH_NCCL) && !defined(PADDLE_WITH_RCCL))
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        device_count, 1,
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
#endif

  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
  } else {
    device_name = "XPU";
  }

  VLOG(1) << string::Sprintf(
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      device_name, device_count, device_count);

  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
}

void ParallelExecutor::CreateLocalScopes(
    Scope *global_scope, const std::vector<Scope *> &local_scopes,
    bool create_new) {
  if (local_scopes.empty()) {
    member_->own_local_scope_ = true;
    member_->local_scopes_.emplace_back(global_scope);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      member_->local_scopes_.emplace_back(&global_scope->NewScope());
    }
  } else {
    member_->own_local_scope_ = false;
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      if (create_new) {
        member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
      } else {
        // Use local scopes directly
        member_->local_scopes_.emplace_back(local_scopes[i]);
      }
    }
  }
}

std::unordered_map<Scope *, Scope *> ParallelExecutor::CreateLocalExecScopes(
    const std::vector<Scope *> &local_scopes, bool create_new) {
  std::unordered_map<Scope *, Scope *> scope_map;

  for (auto *scope : local_scopes) {
    Scope *local_exec_scope = scope;
    if (create_new) {
      local_exec_scope = &scope->NewScope();
    }
    member_->local_exec_scopes_.emplace_back(local_exec_scope);
    scope_map.emplace(scope, local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));

  return scope_map;
}

std::vector<ir::Graph *> ParallelExecutor::CloneGraphToMultiDevices(
    ir::Graph *graph) {
  std::vector<ir::Graph *> graphs;
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_), false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
    graphs.push_back(graph);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
  }

  return graphs;
}

void ParallelExecutor::PrepareNCCLCommunicator(Scope *global_scope) {
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    member_->InitOrGetNCCLCommunicator(global_scope, &member_->build_strategy_);

    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    auto *nccl_ctxs = member_->nccl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(global_scope, member_->build_strategy_);

    auto *bkcl_ctxs = member_->bkcl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_bkcl_context(bkcl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
#endif
  }
}

std::vector<ir::Graph *> ParallelExecutor::CompileGraphWithBuildStrategy(
    ir::Graph *graph, std::vector<ir::Graph *> *device_graphs,
    const std::string &loss_var_name) {
  auto device_count = member_->places_.size();
  std::vector<ir::Graph *> async_graphs(device_count);

  auto &graphs = *device_graphs;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(graphs.size(), device_count,
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
                          device_count, graphs.size()));
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->nccl_ctxs_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->nccl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->nccl_ctxs_);
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(graphs.size(), device_count,
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
                          device_count, graphs.size()));
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->bkcl_ctxs_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->bkcl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->bkcl_ctxs_);
  }
#else
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_);
  }
#endif

  return async_graphs;
}

void ParallelExecutor::CreateVariableInfos(
    std::vector<details::VariableInfo> *var_infos, ir::Graph *graph) {
  PADDLE_ENFORCE_EQ(
      var_infos->size(), 0,
      platform::errors::PreconditionNotMet(
          "var_infos->size() shoule be 0, but received %d", var_infos->size()));
  PADDLE_ENFORCE_EQ(
      member_->is_persistable_.size(), 0,
      platform::errors::PreconditionNotMet(
          "member_->is_persistable_.size() shoule be 0, but received %d",
          member_->is_persistable_.size()));
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos->emplace_back();
      var_infos->back().name_ = node->Var()->Name();
      var_infos->back().type_ = node->Var()->GetType();
      var_infos->back().persistable_ = node->Var()->Persistable();

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
    }
  }

  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos->emplace_back();
      var_infos->back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }
}

std::vector<ir::Graph *> ParallelExecutor::CreateSSAGraphExecutor(
    const ExecutionStrategy &exec_strategy,
    std::vector<ir::Graph *> *async_graphs, ir::Graph *graph) {
  std::vector<ir::Graph *> final_graphs;

  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, *async_graphs));
    final_graphs = *async_graphs;
  } else if (member_->build_strategy_.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
#endif
  } else {
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
    } else {
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        if (member_->use_device_ == p::kXPU) {
#if defined(PADDLE_WITH_XPU)
          VLOG(3) << "use BindThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::BindThreadedSSAGraphExecutor(
              exec_strategy, member_->local_scopes_,
              member_->local_exec_scopes_, member_->places_, graph));
#else
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Paddle can't use XPU device since it's not compiled with XPU,"
              "Please recompile or reinstall Paddle with XPU support."));
#endif
        } else {
          VLOG(3) << "use FastThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
              exec_strategy, member_->local_scopes_,
              member_->local_exec_scopes_, member_->places_, graph));
        }
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
      }
      final_graphs.emplace_back(graph);
    }
  }
  return final_graphs;
}

void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::vector<ir::Graph *> &final_graphs,
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  PADDLE_ENFORCE_GE(
      final_graphs.size(), 1,
      platform::errors::PreconditionNotMet(
          "final_graphs shoule contain at least one graph, but received %d",
          final_graphs.size()));

  PADDLE_ENFORCE_GT(scope_map.size(), 0,
                    platform::errors::PreconditionNotMet(
                        "scope_map shoule contain at least one "
                        "element, but received %d",
                        scope_map.size()));
  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
1528
      op->SetIsVariantScope(true);
1529 1530 1531 1532
    }
  }
}

1533 1534 1535 1536 1537 1538 1539
void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  auto inner_graph = const_cast<ir::Graph *>(&Graph());
  std::vector<ir::Graph *> graphs = {inner_graph};
  ResetOpHandleScopeMapOfGraphs(graphs, scope_map);
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
void ParallelExecutor::SetReaderOpDeviceInfoOfGraphs(
    const std::vector<ir::Graph *> &final_graphs) {
  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
}

1551 1552 1553 1554
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1555
}  // namespace framework
Y
Yang Yang 已提交
1556
}  // namespace paddle
S
sneaxiy 已提交
1557

S
sneaxiy 已提交
1558
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1559
USE_PASS(eager_deletion_pass);
1560
USE_PASS(buffer_shared_inplace_pass);
1561
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1562
USE_PASS(inplace_addto_op_pass);